A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. | LitMetric

BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation.

Photochem Photobiol Sci

Department of Chemistry, United States Air Force Academy, CO 80840, USA.

Published: August 2019

Drug-resistant pathogens, particularly those that result in hospital acquired infections (HAIs), have emerged as a critical priority for the World Health Organization. To address the need for self-disinfecting materials to counter the threat posed by the transmission of these pathogens from surfaces to new hosts, here we investigated if a cationic BODIPY photosensitizer, embedded via electrospinning into nylon and polyacrylonitrile (PAN) nanofibers, was capable of inactivating both bacteria and viruses via antimicrobial photodynamic inactivation (aPDI). Materials characterization, including fiber morphology and the degree of photosensitizer loading, was assessed by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and demonstrated that the materials were comprised of nanofibers (125-215 nm avg. diameter) that were thermostable to >300 °C. The antimicrobial potencies of the resultant Nylon-BODIPY and PAN-BODIPY nanofiber materials were evaluated against four strains of bacteria recognized by the World Health Organization as either critical or high priority pathogens: Gram-positive strains methicillin-resistant S. aureus (MRSA; ATCC BAA-44) and vancomycin-resistant E. faecium (VRE; ATCC BAA-2320), and Gram-negative strains multidrug-resistant A. baumannii (MDRAB; ATCC BAA-1605) and NDM-1 positive K. pneumoniae (KP; ATCC BAA-2146). Our results demonstrated the detection limit (99.9999%; 6 log units reduction in CFU mL) photodynamic inactivation of three strains upon illumination (30-60 min; 40-65 ± 5 mW cm; 400-700 nm): MRSA, VRE, and MDRAB, but only minimal inactivation (47-75%) of KP. Antiviral studies employing PAN-BODIPY against vesicular stomatitis virus (VSV), a model enveloped virus, revealed complete inactivation. Taken together, the results demonstrate the potential for electrospun BODIPY-embedded nanofiber materials as the basis for pathogen-specific anti-infective materials, even at low photosensitizer loadings.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9pp00103dDOI Listing

Publication Analysis

Top Keywords

photodynamic inactivation
12
antimicrobial photodynamic
8
health organization
8
nanofiber materials
8
materials
7
inactivation
5
bodipy-embedded electrospun
4
electrospun materials
4
materials antimicrobial
4
inactivation drug-resistant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!