The overland flow erosion is common and became more serious because of the climate warming inducing more runoff in the Tibet Plateau. The purposes of this study were to evaluate the effects of flow rate, slope gradient, shear stress, stream power, unit stream power and unit energy of water-carrying section on the soil detachment capacity for the soil in the Tibet Plateau of China due to the information is limited. To achieve this aim, laboratory experiments were performed under six flow rates (5, 10, 15, 20, 25 and 30 L min) and six slope gradients (8.74%, 17.63%, 26.79%, 36.40%, 46.63 and 57.73%) by using a slope-adjustable steel hydraulic flume (4 m length, 0.4 m width, 0.2 m depth). The results indicated that soil detachment capacity ranged from 0.173 to 6.325 kg m s with 1.972 kg m s on average. The soil detachment capacity increased with power function as the flow rate and the slope gradient augmented (R = 0.965, NRMSE = 0.177 and NSE = 0.954). The soil detachment capacity was more influenced by flow rate than by slope gradient in this study. The relation between soil detachment capacity and shear stress, stream power, unit stream power and unit energy of water-carrying section can be described by using the linear function and power function, the power function relationship performed better than the linear function in generally. The stream power exhibits the best performance in describing the soil detachment capacity among shear stress, stream power, unit stream power and unit energy of water-carrying section in this study. The erodibility value in this study was larger than and the critical shear stress was less than those for soil in the eastern China. There has a huge potential for the soil in the Tibet Plateau eroded by the water erosion when enough runoff exiting. More attention should be payed to the water erosion process and mechanism in the Tibet Plateau area in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542811PMC
http://dx.doi.org/10.1038/s41598-019-44586-5DOI Listing

Publication Analysis

Top Keywords

soil detachment
28
stream power
28
power unit
24
detachment capacity
24
tibet plateau
20
shear stress
16
soil tibet
12
flow rate
12
rate slope
12
slope gradient
12

Similar Publications

is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.

View Article and Find Full Text PDF

Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution.

World J Microbiol Biotechnol

January 2025

Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.

Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.

View Article and Find Full Text PDF

Switch-Type Electrochemiluminescence Aptasensor for AFB1 Detection Based on CoS Quantum Dots Encapsulated in Co-LDH and a Ferrocene Quencher.

Anal Chem

December 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.

Among the various aflatoxin B1 (AFB1) assays, performing accurate detection is difficult because false positives and false negatives are frequent due to limited sensitivity, expensive equipment, or inadequate pretreatment during operation. Here, an "off-on" switch-type electrochemiluminescence (ECL) aptasensor armed with cobalt-sulfur quantum dots was encapsulated in hollow cobalt-layered double hydroxide nanocages as an enhanced luminescent probe (Co-LDH@QDs), and a ferrocene-modified aptamer (Fc-APT) was used as a luminescent quencher. In general, when Fc-APT was hybridized with complementary DNA modified with a DNA nanotetrahedron, electron transfer between ferrocene and Co-LDH@QDs was facilitated, leading to efficient quenching of the ECL intensity into an "off" state in the absence of AFB1.

View Article and Find Full Text PDF

Aims: Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice (Oryza sativa L.). The aim of this study was to investigate the biocontrol potential of rice rhizosphere actinomycetes against M.

View Article and Find Full Text PDF

Whole genome analysis of Stenotrophomonas geniculata MK2 and antagonism against Botrytis cinerea in strawberry.

Int Microbiol

November 2024

Department of Botany & Microbiology College of Science, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia.

Article Synopsis
  • - A newly identified bacterial strain, Stenotrophomonas geniculata MK2, effectively controls gray mold on strawberries, demonstrating 85% inhibition of the pathogen Botrytis cinerea in lab tests and 88% efficacy on detached fruits.
  • - Whole genome sequencing revealed MK2 has a circular chromosome with a size of 736,465 bp, featuring a high coding ratio and numerous genes primarily involved in metabolic processes and general functions.
  • - The strain produces various secondary metabolites linked to biocontrol properties, showing potential for use as a natural agent against postharvest diseases in strawberries.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!