The size of an ion affects everything from the structure of water to life itself. In this report, to gauge their size, ions dissolved in water are forced electrically through a sub-nanometer-diameter pore spanning a thin membrane and the current is measured. The measurements reveal an ion-selective conductance that vanishes in pores <0.24 nm in diameter-the size of a water molecule-indicating that permeating ions have a grossly distorted hydration shell. Analysis of the current noise power spectral density exposes a threshold, below which the noise is independent of current, and beyond which it increases quadratically. This dependence proves that the spectral density, which is uncorrelated below threshold, becomes correlated above it. The onset of correlations for Li, Mg, Na and K-ions extrapolates to pore diameters of 0.13 ± 0.11 nm, 0.16 ± 0.11 nm, 0.22 ± 0.11 nm and 0.25 ± 0.11 nm, respectively-consonant with diameters at which the conductance vanishes and consistent with ions moving through the sub-nanopore with distorted hydration shells in a correlated way.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542849 | PMC |
http://dx.doi.org/10.1038/s41467-019-10265-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!