Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Steering the evolution of single spin systems is crucial for quantum computing and quantum sensing. The dynamics of quantum systems has been theoretically investigated with parity-time-symmetric Hamiltonians exhibiting exotic properties. Although parity-time symmetry has been explored in classical systems, its observation in a single quantum system remains elusive. We developed a method to dilate a general parity-time-symmetric Hamiltonian into a Hermitian one. The quantum state evolutions ranging from regions of unbroken to broken [Formula: see text] symmetry have been observed with a single nitrogen-vacancy center in diamond. Owing to the universality of the dilation method, our result provides a route for further exploiting and understanding the exotic properties of parity-time symmetric Hamiltonian in quantum systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aaw8205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!