SERine Protease INhibitorS (Serpins) are a superfamily of proteins that are characterized by having a similar three-dimensional structure. The native conformation is not most thermodynamically stable, so polymerization is the main consequence when its stability is altered as a result of certain mutations. The polymerization of serpins has been a research topic for many years. Different mechanisms have been proposed and in the same way different compounds or strategies have been studied to prevent polymerization. A recent paper published in Bioscience Reports by Naseem et al. [ (2019) , 39] studies the role of trehalose in the prevention of the polymerization of antithrombin, which belongs to the serpin superfamily. The main consequence of the antithrombin polymerization is the increased thrombotic risk, since antithrombin is the main inhibitor of the coagulation cascade. The authors demonstrate that trehalose is able to prevent the polymerization of antithrombin, under conditions in which it usually tends to polymerize, and demonstrate it by using different techniques. However, the binding site of trehalose in antithrombin should be defined by site-directed mutagenesis. On the other hand, it is not clear if all serpins polymerize through the same mechanism and it is also not clear if the same serpin can even polymerize through different mechanisms. Therefore, there are still doubts about the potential of trehalose or its derivatives to prevent antithrombin polymerization and, therefore, reduce thrombotic risk, as well as whether trehalose would be able to reduce polymerization in other serpins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579975 | PMC |
http://dx.doi.org/10.1042/BSR20190567 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
East China University of Science and Technology, School of Chemistry and Molecular Engineering, Meilong Road 130, 200237, Shanghai, CHINA.
Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds-including disulfide bonds and boroxine/borate-into a dynamic equilibrium system of monomers, polymers, and materials.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
Stevia rebaudiana is a plant native to South America known for producing steviol glycosides and fructans used in low-calorie and functional foods. This study aimed to cultivate and isolate inulin from hydroponically grown S. rebaudiana roots.
View Article and Find Full Text PDFDiscov Nano
January 2025
National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!