Validation of magneto-inertial measuring units for measuring hip joint angles.

J Biomech

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA. Electronic address:

Published: June 2019

Camera-based motion capture systems are the current gold standard for motion analysis. However, the use of wireless inertial sensor-based systems is increasing in popularity, largely due to convenient portability. The purpose of this study was to validate the use of wireless inertial sensors for measuring hip joint motion with a functional calibration requiring only one motion (walking) and neutral standing. Data were concurrently collected using a 10-camera motion capture system and a wireless inertial sensor-based system. Hip joint angles were measured for 10 participants during walking, jumping jack, and bilateral squat tasks and for a subset (n = 5) a jump turn task. Camera-based system hip joint angles were calculated from retro-reflective marker positions and sensor-based system angles were calculated in MATLAB using the sensor output quaternions. Most hip joint angles measured with the sensor-based system were within 6° of angles measured with the camera motion capture system. Accurate measurement of motion outside of a laboratory setting has broad implications for diagnosing movement abnormalities, monitoring sports performance, and assessing rehabilitation progress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370255PMC
http://dx.doi.org/10.1016/j.jbiomech.2019.05.029DOI Listing

Publication Analysis

Top Keywords

hip joint
20
joint angles
16
motion capture
12
wireless inertial
12
sensor-based system
12
angles measured
12
measuring hip
8
inertial sensor-based
8
capture system
8
system hip
8

Similar Publications

Concurrent Phenylketonuria and Pyogenic Sacroiliitis: A Case Report Highlighting Rare Co-Occurrence.

Int J Rheum Dis

January 2025

Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Erciyes University School of Medicine, Kayseri, Turkey.

A 19-year-old male patient with phenylketonuria (PKU) was presented to our clinic with complaints of left hip pain and fever for one week. Physical examination and MRI examination showed findings compatible with pyogenic sacroiliitis and an abscess in the left iliopsoas muscle. The patient's clinical and radiological findings improved markedly with empirical antibiotic treatment.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) often leads to pain and functional limitations, impacting work and daily life. Physical activity (PA) is an important part of the treatment. Wearable activity trackers (WATs) offer a novel approach to promote PA but could also aid in finding a sustainable PA level over time.

View Article and Find Full Text PDF

Background: Hip morphology variations, particularly in femoral neck shaft angle (NSA) and iliac wing width (IWW), have been associated with gluteal tendinopathy. However, the biomechanical implications of these morphological differences on gluteal muscle function are not well understood. This study investigates how NSA and IWW influence gluteal muscle forces, moment arms, and estimated tendon loads during walking, aiming to provide insights into the potential biomechanical pathways that may contribute to altered lateral hip loading patterns.

View Article and Find Full Text PDF

Purpose: The Coronavirus Disease 2019 (COVID-19) pandemic delayed elective procedures such as total joint arthroplasty. As surgical volumes return to prepandemic levels, understanding the implications of COVID-19 becomes imperative. This study explored the effects of COVID-19 on the short-term outcomes of hip arthroplasty.

View Article and Find Full Text PDF

Enhancing gait mechanics: The effectiveness of a novel walking aid.

J Orthop Sci

January 2025

Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan.

Background: A walking support orthosis known as the e-foot®, a rubber orthotic worn from the hip to the forefoot to enhance joint flexibility and movement, has been developed to assist elderly people and individuals with walking impairments. Despite its widespread acceptance and positive reception in some care settings, the precise impact of this device on gait dynamics remains unexplored. This study aims to bridge this gap by comparing the walking speeds of healthy volunteers using the e-foot® against their normal walking speeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!