Mechanical properties of l-lysine based segmented polyurethane vascular grafts and their shape memory potential.

Mater Sci Eng C Mater Biol Appl

Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, 28006 Madrid, Spain.

Published: September 2019

Segmented polyurethanes based on polycaprolactone, 4,4 (metylene-bis-cyclohexyl) isocyanate, and l-lysine were synthesized, manufactured as small vascular grafts and characterized according to ISO 7198 standard for cardiovascular implants-tubular vascular prosthesis. In terms of mechanical properties, the newly synthesized polyurethane films exhibited lower secant modulus than Tecoflex™ SG 80A, a well-known medical grade polyurethane. Similarly, when tested as grafts, the l-lysine-based polyurethane exhibited lower longitudinal failure load (11.5 N vs. 116 N), lower circumferential failure load per unit length (5.67 N/mm vs. 14.0 N/mm) and lower suture forces for both nylon (13.3 N vs. 24.0 N) and silk (14.0 N vs. 19.3 N) when compared to Tecoflex™ SG 80A grafts. l-Lysine-based graft exhibited a burst strength of 3620 mmHg (482.6 kPa) and a compliance of 0.16%/mmHg. The cell adhesion was demonstrated with NIH/3T3 fibroblasts where cell adhesion was observed on both films and grafts, while cell alignment was observed only on the grafts. The mechanical properties of this polyurethane and the possibility of strain-induced PCL crystals as the switching phase for shape memory materials, allowed a strain recovery ratio and a strain fixity ratio with values higher than 95% and 90%, respectively, with a repeatability of the shape-memory properties up to 4 thermo-mechanical cycles. Overall, the properties of lysine-based polyurethanes are suitable for large diameter vascular grafts where cell alignment can be controlled by their shape memory potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.04.073DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
vascular grafts
12
shape memory
12
memory potential
8
exhibited lower
8
tecoflex™ 80a
8
grafts l-lysine-based
8
failure load
8
cell adhesion
8
grafts cell
8

Similar Publications

Development of high-throughput electrospun chitosan/PEO-CNC composite membranes with enhanced antibacterial and oil-water separation properties.

Int J Biol Macromol

January 2025

Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.

Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).

View Article and Find Full Text PDF

Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions.

View Article and Find Full Text PDF

A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!