Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering.

Mater Sci Eng C Mater Biol Appl

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy. Electronic address:

Published: September 2019

Hydrogen sulfide (HS)-based therapy is a promising therapeutic strategy for several biomedical applications. Following the observation that endogenous and exogenous HS plays a prominent role as a bone anabolic agent, we recently developed a silk fibroin (SF) porous scaffold loaded with GYY4137 (GYY), an HS donor, for applications in bone tissue engineering. Here, we assayed whether the combination of SF with HS potentiates the osteoconductive properties of SF. Biocompatibility and osteoanabolic activity were assayed in vitro using human bone marrow mesenchymal stromal cells. Cell cultures were performed on a perfusion bioreactor to obtain results closer to the in vivo microenvironment. Cytotoxicity was excluded by lactate dehydrogenase and live/dead assays. Cell colonization and mineral apposition were evaluated by Haematoxylin & Eosin and Von Kossa/Alizarin Red-S stainings respectively. PCR array for human osteogenesis and immunohistochemical analyses were performed to identify pathways and targets involved. Our findings show that HS-releasing SF scaffolds supported cell adhesion, proliferation and viability. Moreover, HS activated genes and proteins involved in ossification, osteoblast differentiation, bone mineral metabolism and angiogenesis allowing a high and early mineralization. Based on these properties, we suggest the use of HS-releasing SF scaffolds for bone healing and regeneration applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.04.039DOI Listing

Publication Analysis

Top Keywords

silk fibroin
8
bone tissue
8
tissue engineering
8
hs-releasing scaffolds
8
bone
6
hydrogen sulfide-releasing
4
sulfide-releasing silk
4
fibroin scaffold
4
scaffold bone
4
engineering hydrogen
4

Similar Publications

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

Background/purpose: Dental implants can restore both function and aesthetics in edentulous areas. However, the absence of cushioning mechanical behavior in implants may limit their clinical performance and reduce the long-term survival rates. This study aimed to establish an implant cushion mechanism that mimicked the natural periodontal ligament, utilizing the properties of composite hydrogels.

View Article and Find Full Text PDF

Biopolymer-Derived Carbon Materials for Wearable Electronics.

Adv Mater

January 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics.

View Article and Find Full Text PDF

Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs.

Adv Mater

January 2025

Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.

Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.

View Article and Find Full Text PDF

Correction: Enhanced effects of slowly co-released TGF-β3 and BMP-2 from biomimetic calcium phosphate-coated silk fibroin scaffolds in the repair of osteochondral defects.

J Nanobiotechnology

January 2025

Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!