Electron beam irradiation was used for the synthesize of porous and non-porous pectin based hydrogels through conjugation of pectin with 5-hydroxytryptophan in the presence and absence of sodium dodecyl sulfate, respectively. The hydrogels were characterized by different methods. Tetracycline hydrochloride was loaded on the hydrogels by swelling equilibrium method and its release in different media was studied. The effect of SDS amount and electron beam irradiation dose on the swelling, drug loading, drug release, gel content, and mechanical properties were investigated. The release of drug form both hydrogels followed non-Fickian diffusion mechanism and was best fitted with the Korsmeyer-Peppas model. In vitro, drug release studies revealed that the release of drug from non-porous hydrogel is relatively slow while its release from porous hydrogel occurs with higher amounts and faster rate. Biocompatibility and cytotoxic analysis indicate that the prepared hydrogels dressing are non-thrombogenic, non-hemolytic and non-toxic. Furthermore, acceptable bacteria growth inhibition against Escherichia coli and Staphylococcus aureus were observed for both drug-loaded hydrogels. Thus, these hydrogels are suitable for the application of an antibacterial wound dressing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.04.071DOI Listing

Publication Analysis

Top Keywords

electron beam
12
beam irradiation
12
porous non-porous
8
non-porous pectin
8
pectin based
8
hydrogels
8
based hydrogels
8
drug release
8
release drug
8
drug
6

Similar Publications

While GaN nanowires (NWs) offer an attractive architecture for a variety of nanoscale optical, electronic, and mechanical devices, defects such as crystal polarity inversion domains (IDs) can limit device performance. Moreover, the formation of such defects during NW growth is not fully understood. In this study, we use transmission electron microscopy (TEM) and atom probe tomography (APT) to investigate the effects of sub-monolayer contamination at the regrowth interface in GaN NWs grown by selective-area molecular beam epitaxy (MBE).

View Article and Find Full Text PDF

Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.

Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.

View Article and Find Full Text PDF

For the purpose of assessing image quality and calculating patient X-ray dosage in radiology, computed tomography (CT), fluoroscopy, mammography, and other fields, it is necessary to have prior knowledge of the X-ray energy spectrum. The main components of an X-ray tube are an electron filament, also known as the cathode, and an anode, which is often made of tungsten or rubidium and angled at a certain angle. At the point where the electrons generated by the cathode and the anode make contact, a spectrum of X-rays with energies spanning from zero to the maximum energy value of the released electrons is created.

View Article and Find Full Text PDF

Influence of Photoemission Geometry on Timing and Efficiency in 4D Ultrafast Electron Microscopy.

Chemphyschem

January 2025

University of Minnesota Twin Cities, Chemical Engineering and Materials Science, 421 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.

Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun.

View Article and Find Full Text PDF

Atom probe tomography (APT) enables three-dimensional chemical mapping with near-atomic scale resolution. However, this method requires precise sample preparation, which is typically achieved using a focused ion beam (FIB) microscope. As the ion beam induces some degree of damage to the sample, it is necessary to apply a protective layer over the region of interest (ROI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!