TEMPO oxidized nano-cellulose containing thermo-responsive injectable hydrogel for post-surgical peritoneal tissue adhesion prevention.

Mater Sci Eng C Mater Biol Appl

Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea. Electronic address:

Published: September 2019

The objective of this study was to present an effective injectable adhesion barrier comprised of TEMPO-oxidized cellulose nanofiber (TOCN), methyl cellulose, carboxymethyl cellulose, and polyethylene glycol. Hydrogels with different concentrations (0.2, 0.5, 0.8, 1% w/v) of bio compatible TOCN were investigated to determine their abilities to prevent post-surgical peritoneal adhesion using a rat cecal wall abrasion model. Sol-gel transition at body temperature (37 °C) was optimized by adjusting concentration of sodium ions (Na), with a gelation time of 45 ± 7 s. These TOCN containing hydrogels showed non cytotoxicity to rat bone marrow mesenchymal stem cells (RBMSCs) and L929 fibroblast cells as cell models during in vitro assessment. Degradation studies revealed that, TOCN concentration in hydrogel was inversely proportional to hydrolytic degradation rate. From in vivo evaluations, TOCN 0.2 hydrogel significantly reduced peritoneal adhesion in rat (n = 8) compared to untreated controls based on gross observation, histological analysis, and expression analysis of marker proteins. By taking advantages of thermo gelling, high stability, non-invasive way of application and rapid recovery potential, TOCN containing bio compatible hydrogel could be used as a cost-effective barrier to efficiently inhibit post-surgical peritoneal adhesions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.03.110DOI Listing

Publication Analysis

Top Keywords

post-surgical peritoneal
12
bio compatible
8
peritoneal adhesion
8
adhesion rat
8
tocn
6
tempo oxidized
4
oxidized nano-cellulose
4
nano-cellulose thermo-responsive
4
thermo-responsive injectable
4
hydrogel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!