Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Although artificial insemination (AI) was developed as a means of controlling disease transmission, pathogens can still be transmitted to females in semen used for AI. In addition, bacteria can cause deterioration in sperm quality during storage. Semen becomes contaminated by the male's normal bacterial flora as it passes out of the reproductive tract but potential pathogens may also contaminate the semen. Therefore, semen samples from stallions to be used for AI are tested before the breeding season to minimize transmission of pathogens to inseminated mares. In Sweden, semen samples are tested at the National Veterinary Institute, Uppsala (SVA). For the present study, a retrospective analysis was made of potentially pathogenic bacteria isolated from samples submitted to the SVA from 2007 to 2017.
Results: In our study, Taylorella equigenitalis was found infrequently (53 out of 25,512 samples), representing 11 out of 2308 stallions. If T. equigenitalis was detected, the stallions were treated with antibiotics and re-tested later in the same year. Klebsiella pneumoniae and beta haemolytic streptococci were the most commonly found potential pathogens, whereas Pseudomonas aeruginosa was also isolated occasionally. There were considerable differences in the number of species isolated each year.
Conclusions: Potential pathogens were identified in relatively few of the samples submitted to SVA during this period, with T. equigenitalis not being identified since 2015. Of the other potential pathogens, K. pneumoniae and beta haemolytic streptococci were the most common. The information is relevant for determining guidelines on the testing and treatment of stallions before breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543573 | PMC |
http://dx.doi.org/10.1186/s13028-019-0459-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!