A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Far Red Fluorescent Proteins: Where Is the Limit of the Acylimine Chromophore? | LitMetric

Far Red Fluorescent Proteins: Where Is the Limit of the Acylimine Chromophore?

J Chem Theory Comput

Nano-Bio Spectroscopy Group and ETSF, Dpto. Fisica de Materiales , Universidad del País Vasco, CFM CSIC-UPV/EHU-MPC and DIPC , Av. Tolosa 72 , 20018 San Sebastián , Spain.

Published: July 2019

The search for new near-infrared probes for fluorescence imaging applications is a rapidly growing field of research. Monomeric fluorescent proteins that autocatalyze their chromophore are the most versatile markers for in vivo applications, but the development of bright far-red fluorescent proteins (RFPs) has proven difficult. In this contribution, we search for the theoretical limit of the red shift and how it can be reached without sacrificing the fluorescence quantum yield. Through extensive excited-state pathway calculations, molecular dynamics sampling, and statistical modeling using QM/MM schemes, we provide a new understanding of the chromophore's photophysics including the role of its acylimine extension, which is the main difference from other families of fluorescent proteins. The excited-state dynamics of the mPlum RFP and its mutants provide an ideal basis due to mPlum's flexible binding pocket and extended dynamic Stokes shift. We found a large number of structural species with red-shifted emission that differ in rotamer states and H-bonds between key amino acid residues in the binding pocket. By analyzing their spectral and structural features, we derive guidelines for future rational genetic design strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.9b00070DOI Listing

Publication Analysis

Top Keywords

fluorescent proteins
16
binding pocket
8
red fluorescent
4
proteins
4
proteins limit
4
limit acylimine
4
acylimine chromophore?
4
chromophore? search
4
search near-infrared
4
near-infrared probes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!