The infotaxis scheme is a search strategy for a diffusive source, where the sensor platform is driven to reduce the uncertainty about the source through climbing the information gradient. The infotaxis scheme has been successfully applied in many source searching tasks and has demonstrated fast and stable searching capabilities. However, the infotaxis scheme focuses on gathering information to reduce the uncertainty down to zero, rather than chasing the most probable estimated source when a reliable estimation is obtained. This leads the sensor to spend more time exploring the space and yields a longer search path. In this paper, from the context of exploration-exploitation balance, a novel search scheme based on minimizing free energy that combines the entropy and the potential energy is proposed. The term entropy is implemented as the exploration to gather more information. The term potential energy, leveraging the distance to the estimated sources, is implemented as the exploitation to reinforce the chasing behavior with the receding of the uncertainty. It results in a faster effective search strategy by which the sensor determines its actions by minimizing the free energy rather than only the entropy in traditional infotaxis. Simulations of the source search task based on the computational plume verify the efficiency of the proposed strategy, achieving a shorter mean search time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603600PMC
http://dx.doi.org/10.3390/s19112465DOI Listing

Publication Analysis

Top Keywords

potential energy
12
infotaxis scheme
12
diffusive source
8
based minimizing
8
entropy potential
8
search strategy
8
reduce uncertainty
8
minimizing free
8
free energy
8
source
6

Similar Publications

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

The transmembrane potential of plasma membranes and membrane-bound organelles plays a fundamental role in cellular functions such as signal transduction, ATP synthesis, and homeostasis. Rhodamine voltage reporters (RhoVRs), which operate based on the photoinduced electron transfer (PeT) mechanism, are non-invasive, small-molecule voltage sensors that can detect rapid voltage changes, with some of them specifically targeting the inner mitochondrial membrane. In this work, we conducted extensive molecular dynamics simulations and free-energy calculations to investigate the physicochemical properties governing the orientation as well as membrane permeation barriers of three RhoVRs.

View Article and Find Full Text PDF

Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling.

J Cereb Blood Flow Metab

January 2025

Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA.

Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g.

View Article and Find Full Text PDF

MOF-derived Carbon-Based Materials for Energy-Related Applications.

Adv Mater

January 2025

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.

New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.

View Article and Find Full Text PDF

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!