AI Article Synopsis

  • Unsupervised anomaly detection is crucial for managing streaming data from smart devices, helping to prevent machine downtime through real-time monitoring of various sensor data.
  • Different types of data may call for different anomaly detection methods, with some benefiting from statistical techniques and others from deep learning approaches.
  • The paper introduces FuseAD, a novel technique that merges statistical and deep learning methods, demonstrating improved performance on benchmark datasets compared to existing methods.

Article Abstract

The need for robust unsupervised anomaly detection in streaming data is increasing rapidly in the current era of smart devices, where enormous data are gathered from numerous sensors. These sensors record the internal state of a machine, the external environment, and the interaction of machines with other machines and humans. It is of prime importance to leverage this information in order to minimize downtime of machines, or even avoid downtime completely by constant monitoring. Since each device generates a different type of streaming data, it is normally the case that a specific kind of anomaly detection technique performs better than the others depending on the data type. For some types of data and use-cases, statistical anomaly detection techniques work better, whereas for others, deep learning-based techniques are preferred. In this paper, we present a novel anomaly detection technique, FuseAD, which takes advantage of both statistical and deep-learning-based approaches by fusing them together in a residual fashion. The obtained results show an increase in area under the curve (AUC) as compared to state-of-the-art anomaly detection methods when FuseAD is tested on a publicly available dataset (Yahoo Webscope benchmark). The obtained results advocate that this fusion-based technique can obtain the best of both worlds by combining their strengths and complementing their weaknesses. We also perform an ablation study to quantify the contribution of the individual components in FuseAD, i.e., the statistical ARIMA model as well as the deep-learning-based convolutional neural network (CNN) model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603659PMC
http://dx.doi.org/10.3390/s19112451DOI Listing

Publication Analysis

Top Keywords

anomaly detection
24
unsupervised anomaly
8
detection streaming
8
streaming data
8
detection technique
8
anomaly
6
detection
6
data
6
fusead
4
fusead unsupervised
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!