In natural habitats, bacterial species often coexist in biofilms. They interact in synergetic or antagonistic ways and their interactions can influence the biofilm development and properties. Still, very little is known about how the coexistence of multiple organisms impact the multispecies biofilm properties. In this study, we examined the behaviour of a dual-species biofilm at the air-liquid interface composed by two environmental bacteria: Bacillus licheniformis and a phenazine mutant of Pseudomonas fluorescens. Study of the planktonic and biofilm growths for each species revealed that P. fluorescens grew faster than B. licheniformis and no bactericidal effect from P. fluorescens was detected, suggesting that the growth kinetics could be the main factor in the dual-species biofilm composition. To validate this hypothesis, the single- and dual-species biofilm were characterized by biomass quantification, microscopy and rheology. Bacterial counts and microscale architecture analysis showed that both bacterial populations coexist in the mature pellicle, with a dominance of P. fluorescens. Real-time measurement of the dual-species biofilms' viscoelastic (i.e. mechanical) properties using interfacial rheology confirmed that P. fluorescens was the main contributor of the biofilm properties. Evaluation of the dual-species pellicle viscoelasticity at longer time revealed that the biofilm, after reaching a first equilibrium, created a stronger and more cohesive network. Interfacial rheology proves to be a unique quantitative technique, which combined with microscale imaging, contributes to the understanding of the time-dependent properties within a polymicrobial community at various stages of biofilm development. This work demonstrates the importance of growth kinetics in the bacteria competition for the interface in a model dual-species biofilm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.000819 | DOI Listing |
Int Dent J
January 2025
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China. Electronic address:
Objective: Selective inhibition of cariogenic bacteria is regarded as a potential strategy against caries. To assess the potential of SCH-79797, one novel promising antibiotic, in microbial equilibrium using a dual-species biofilms model of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia.
Background/objectives: Biofilm-associated infections, particularly those involving Candida auris and Staphylococcus aureus, pose significant challenges in clinical settings due to their resilience and resistance to conventional treatments. This study aimed to synthesize novel triazole derivatives containing a piperazine ring via click chemistry and evaluate their efficacy in disrupting biofilms formed by these pathogens.
Methods: Triazole derivatives were synthesized using click chemistry techniques.
Microorganisms
December 2024
Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel.
Facultatively anaerobic spp. and anaerobic spp. are among the most prominent bacteria on human skin.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria.
Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic.
Polymicrobial biofilms, the reason for most chronic wound infections, play a significant role in increasing antibiotic resistance. The in vivo effectiveness of the new anti-biofilm therapy is conditioned by the profound evaluation using appropriate in vitro biofilm models. Since nutrient availability is crucial for in vitro biofilm formation, this study is focused on the impact of four selected cultivation media on the properties of methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!