A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comparison of two workflows for regulome and transcriptome-based prioritization of genetic variants associated with myocardial mass. | LitMetric

A typical task arising from main effect analyses in a Genome Wide Association Study (GWAS) is to identify single nucleotide polymorphisms (SNPs), in linkage disequilibrium with the observed signals, that are likely causal variants and the affected genes. The affected genes may not be those closest to associating SNPs. Functional genomics data from relevant tissues are believed to be helpful in selecting likely causal SNPs and interpreting implicated biological mechanisms, ultimately facilitating prevention and treatment in the case of a disease trait. These data are typically used post GWAS analyses to fine-map the statistically significant signals identified agnostically by testing all SNPs and applying a multiple testing correction. The number of tested SNPs is typically in the millions, so the multiple testing burden is high. Motivated by this, in this study we investigated an alternative workflow, which consists in utilizing the available functional genomics data as a first step to reduce the number of SNPs tested for association. We analyzed GWAS on electrocardiographic QRS duration using these two workflows. The alternative workflow identified more SNPs, including some residing in loci not discovered with the typical workflow. Moreover, the latter are corroborated by other reports on QRS duration. This indicates the potential value of incorporating functional genomics information at the onset in GWAS analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687530PMC
http://dx.doi.org/10.1002/gepi.22215DOI Listing

Publication Analysis

Top Keywords

functional genomics
12
genomics data
8
gwas analyses
8
multiple testing
8
alternative workflow
8
qrs duration
8
snps
7
comparison workflows
4
workflows regulome
4
regulome transcriptome-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!