A numerical taxonomic analysis was performed to evaluate the appropriateness of a single biovar designation (biovar V) for all Pseudomonas fluorescens isolates negative for denitrification, levan production and phenazine pigmentation and to determine the relationship of biovar V strains to other taxa within the same Pseudomonas RNA homology group. Seventy-two strains assigned to P. fluorescens biovar V and four strains of P. fragi were characterized and the data subjected to a numerical taxonomic analysis along with comparable data for 17 previously characterized strains of this biovar and 89 P. putida strains. Seven distinct biovar V clusters containing three or more strains were revealed, and the carbon sources useful for their differentiation were identified. Cluster 1 (38 strains) closely resembled two atypical P. fluorescens I strains. It was also related to P. fluorescens biovar IV and to P. fragi. Cluster 2 (5 strains) was related to cluster 1. Cluster 3 (7 strains) was identical to a major group of meat spoilage psychrotrophic pseudomonads (P. lundensis). Cluster 4 (3 strains) was not related to any other group examined. Cluster 5 consisted of six isolates initially designated P. putida A along with four P. fluorescens biovar V strains all of which resembled P. putida more than they resembled the other P. fluorescens groups. Cluster 6 (16 strains) was distinct from the other biovar V clusters, but was closely related to P. fluorescens biovars I and II. Cluster 7 (3 strains) shared many characteristics with cluster 5. Separate P. fluorescens biovar designations are proposed for cluster 6 and for the combined clusters 1 and 2. A new P. putida biovar is proposed for the combined clusters 5 and 7.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-132-10-2709DOI Listing

Publication Analysis

Top Keywords

cluster strains
24
fluorescens biovar
20
strains
14
biovar
12
biovar strains
12
cluster
10
fluorescens
9
pseudomonas fluorescens
8
fluorescens biovars
8
psychrotrophic pseudomonads
8

Similar Publications

Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.

Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.

View Article and Find Full Text PDF

The utilization of chemical pesticides recovers 30%-40% of food losses. However, their application has also triggered a series of problems, including food safety, environmental pollution, pesticide resistance, and incidents of poisoning. Consequently, green pesticides are increasingly seen as viable alternatives to their chemical counterparts.

View Article and Find Full Text PDF

The mycotoxigenic fungi, and , commonly co-colonize maize in the field, yet their direct interactions at the chemical communication level have not been well characterized. Here, we examined if and how the two most infamous mycotoxins produced by these species, aflatoxin and fumonisin, respectively, govern interspecies growth and mycotoxin production. We showed that fumonisin producing strains of suppressed the growth of while non-producers did not.

View Article and Find Full Text PDF

Unlabelled: The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density.

View Article and Find Full Text PDF

The Gut Microbiome in Hyperuricemia and Gout.

Arthritis Rheumatol

January 2025

Assistant Professor of Pathology and of Microbiology and Microbiology and Immunology, Stanford University, Stanford, CA, 94305.

Humans develop hyperuricemia via decreased urate elimination and excess urate production, consequently promoting monosodium urate crystal deposition and incident gout. Normally, approximately two thirds of urate elimination is renal. However, chronic kidney disease (CKD) and other causes of decreased renal urate elimination drive hyperuricemia in most with gout.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!