Biogenic thiols, such as cysteine, have been used to control the speciation of Hg(ii) in bacterial exposure experiments. However, the extracellular biodegradation of excess cysteine leads to the formation of Hg(ii)-sulfide species, convoluting the interpretation of Hg(ii) uptake results. Herein, we test the hypothesis that Hg(ii)-sulfide species formation is a critical step during bacterial Hg(ii) uptake in the presence of excess cysteine. An Escherichia coli (E. coli) wild-type and mutant strain lacking the decR gene that regulates cysteine degradation to sulfide were exposed to 50 and 500 nM Hg with 0 to 2 mM cysteine. The decR mutant released ∼4 times less sulfide from cysteine degradation compared to the wild-type for all tested cysteine concentrations during a 3 hour exposure period. We show with thermodynamic calculations that the predicted concentration of Hg(ii)-cysteine species remaining in the exposure medium (as opposed to forming HgS(s)) is a good proxy for the measured concentration of dissolved Hg(ii) (i.e., not cell-bound). Likewise, the measured cell-bound Hg(ii) correlates with thermodynamic calculations for HgS(s) formation in the presence of cysteine. High resolution X-ray absorption near edge structure (HR-XANES) spectra confirm the existence of cell-associated HgS(s) at 500 nM total Hg and suggest the formation of Hg-S clusters at 50 nM total Hg. Our results indicate that a speciation change to Hg(ii)-sulfide controls Hg(ii) cell-association in the presence of excess cysteine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9mt00077a | DOI Listing |
Environ Res
December 2024
College of Resources and Environment, Southwest University, Chongqing, 400715, China.
Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China. Electronic address:
Background: Heavy metal pollution is a global environmental problem. Self-reduction strategy has garnered attention in adsorption and electrochemical detection of heavy metal ions due to their operational simplicity and elimination of the need for external electrodeposition steps. Therefore, it is crucial to integrate self-reduction-based adsorption with electrochemical detection.
View Article and Find Full Text PDFJ Environ Health Sci Eng
June 2024
School of Materials, Energy, Water, Environmental Sciences and Engineering (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania.
Unlabelled: Heavy metals exist in the ecosystem both naturally and due to anthropogenic activities and as recalcitrant pollutants; they are non-biodegradable and cause acute and chronic diseases to human beings and many lifeforms. A statistical experimental approach was applied in this current study to optimize the detoxification of mercury [Hg(II)] from mono-component biosorption system by a novel hybrid granular activated carbon (biosorbent) prepared from maize plant residues. The analysis of variance by the application of central composite design shows that all the studied independent factors greatly influence Hg(II) removal efficiency and uptake capacity.
View Article and Find Full Text PDFTalanta
February 2025
School of Resources, Environment and Materials, Guangxi University, Nanning, China.
The development of binding gels with a fast uptake rate, high capacity, and good selectivity could be beneficial for trace Hg(II) detection based on the DGT technology. In this study, a novel PAN@MoS/rGO-DGT was assembled by using the nanocomposite embedded in polyacrylonitrile membrane (PAN@MoS/rGO) as the binding phase. The interior regular finger-like macropore of the gel provided a convenient channel for the rapid mass diffusion of Hg(II), and the abundant sulfur offered the paramount driving force for trapping Hg(II).
View Article and Find Full Text PDFSci Total Environ
December 2024
China Nonferrous Metal industry Xi 'an Survey and Design Institute Co., Ltd., Xian, Shaanxi Province 710054, China.
Mercury (Hg) and lead (Pb) pose significant risks to human health due to their high toxicity and bioaccumulative properties. This study aimed to develop a novel biochar composite (HMB-S), polyfunctionalized with manganese dioxide (α-MnO) and sulfur functional groups, for the effective immobilization of Hg(II) and Pb(II) from contaminated environments. HMB-S demonstrated superior adsorption capacities of 190.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!