A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using equivalence class counts for fast and accurate testing of differential transcript usage. | LitMetric

RNA sequencing has enabled high-throughput and fine-grained quantitative analyses of the transcriptome. While differential gene expression is the most widely used application of this technology, RNA-seq data also has the resolution to infer differential transcript usage (DTU), which can elucidate the role of different transcript isoforms between experimental conditions, cell types or tissues. DTU has typically been inferred from exon-count data, which has issues with assigning reads unambiguously to counting bins, and requires alignment of reads to the genome. Recently, approaches have emerged that use transcript quantification estimates directly for DTU. Transcript counts can be inferred from 'pseudo' or lightweight aligners, which are significantly faster than traditional genome alignment. However, recent evaluations show lower sensitivity in DTU analysis compared to exon-level analysis. Transcript abundances are estimated from equivalence classes (ECs), which determine the transcripts that any given read is compatible with. Recent work has proposed performing a variety of RNA-seq analysis directly on equivalence class counts (ECCs). Here we demonstrate that ECCs can be used effectively with existing count-based methods for detecting DTU. We evaluate this approach on simulated human and drosophila data, as well as on a real dataset through subset testing. We find that ECCs have similar sensitivity and false discovery rates as exon-level counts but can be generated in a fraction of the time through the use of pseudo-aligners. We posit that equivalence class read counts are a natural unit on which to perform differential transcript usage analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524746PMC
http://dx.doi.org/10.12688/f1000research.18276.2DOI Listing

Publication Analysis

Top Keywords

equivalence class
12
differential transcript
12
transcript usage
12
class counts
8
transcript
7
counts
5
dtu
5
equivalence
4
counts fast
4
fast accurate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!