There is significant current interest in decoding mental states from electroencephalography (EEG) recordings. EEG signals are subject-specific, are sensitive to disturbances, and have a low signal-to-noise ratio, which has been mitigated by the use of laboratory-grade EEG acquisition equipment under highly controlled conditions. In the present study, we investigate single-trial decoding of natural, complex stimuli based on scalp EEG acquired with a portable, 32 dry-electrode sensor system in a typical office setting. We probe generalizability by a leave-one-subject-out cross-validation approach. We demonstrate that support vector machine (SVM) classifiers trained on a relatively small set of denoised (averaged) pseudotrials perform on par with classifiers trained on a large set of noisy single-trial samples. We propose a novel method for computing sensitivity maps of EEG-based SVM classifiers for visualization of EEG signatures exploited by the SVM classifiers. Moreover, we apply an NPAIRS resampling framework for estimation of map uncertainty, and thus show that effect sizes of sensitivity maps for classifiers trained on small samples of denoised data and large samples of noisy data are similar. Finally, we demonstrate that the average pseudotrial classifier can successfully predict the class of single trials from withheld subjects, which allows for fast classifier training, parameter optimization, and unbiased performance evaluation in machine learning approaches for brain decoding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501266 | PMC |
http://dx.doi.org/10.1155/2019/9210785 | DOI Listing |
Sensors (Basel)
January 2025
Curtin School of Allied Health, Curtin University, Perth 6102, Australia.
In hospitals, timely interventions can prevent avoidable clinical deterioration. Early recognition of deterioration is vital to stopping further decline. Measuring the way patients position themselves in bed and change their positions may signal when further assessment is necessary.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Environmental Remote Sensing and Geoinformatics, Trier University, Universitätsring 15, 54296 Trier, Germany.
Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Earth, Environment and Geospatial Sciences, Saint Louis University, Saint Louis, MO 63108, USA.
Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visible, near-infrared (VNIR), and shortwave infrared (SWIR) regions. To fully utilize the spectral and texture features of the full VNIR and SWIR spectral domains, a computer-vision-aided image co-registration methodology was implemented to seamlessly align the VNIR and SWIR bands.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China.
In this study, the implementation of traditional machine learning models in the intelligent management of swine is explored, focusing on the impact of LDA preprocessing on pig facial recognition using an SVM. Through experimental analysis, the kernel functions for two testing protocols, one utilizing an SVM exclusively and the other employing a combination of LDA and an SVM, were identified as polynomial and RBF, both with coefficients of 0.03.
View Article and Find Full Text PDFBiomedicines
January 2025
Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and distinguishing its subtypes holds significant value for diagnosis, treatment, and the prognosis. Unsupervised clustering analysis was conducted to classify HCC subtypes. Subtype signature genes were identified using LASSO, SVM, and logistic regression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!