The current model of polarized plasma membrane protein sorting in epithelial cells has been largely generated on the basis of experiments characterizing the polarized distribution of a relatively small number of overexpressed model proteins under various experimental conditions. Thus, the possibility exists that alternative roles of various types of sorting machinery may have been underestimated or missed. Here, we utilize domain-selective surface biotinylation combined with stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry to quantitatively define large populations of apical and basolateral surface proteins in Madin-Darby canine kidney (MDCK) cells. We identified 313 plasma membrane proteins, of which 38% were apical, 51% were basolateral, and 11% were nonpolar. Silencing of clathrin adaptor proteins (AP) AP-1A, AP-1B, or both caused redistribution of basolateral proteins as expected but also, of a large population of apical proteins. Consistent with their previously reported ability to compensate for one another, the strongest loss of polarity was observed when we silenced AP-1A and AP-1B simultaneously. We found stronger evidence of compensation in the apical pathway compared with the basolateral pathway. Surprisingly, we also found subgroups of proteins that were affected after silencing just one adaptor, indicating previously unrecognized independent roles for AP-1A and AP-1B. While AP-1B silencing mainly affected basolateral polarity, AP-1A silencing seemed to cause comparable loss of apical and basolateral polarity. Our results uncover previously overlooked roles of AP-1 in polarized distribution of apical and basolateral proteins and introduce surface proteomics as a method to examine mechanisms of polarization with a depth not possible until now.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6575629PMC
http://dx.doi.org/10.1073/pnas.1821076116DOI Listing

Publication Analysis

Top Keywords

polarized distribution
12
apical basolateral
12
ap-1a ap-1b
12
proteins
9
mdck cells
8
clathrin adaptor
8
ap-1 polarized
8
surface proteins
8
plasma membrane
8
basolateral proteins
8

Similar Publications

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

Despite their widespread adoption, particle-scale simulation methods, such as the Discrete Element Method (DEM), for electrically charged particles in several natural processes and industrial transformations do not include realistic polarization effects. At close distances, these can dominate the particle motion and are impossible to predict by the commonly adopted Coulomb point-charge approximation. Sophisticated mathematical tools can account for uneven charge distributions, predicting an attractive force between a charged particle and a neutral particle or possible attraction between two like-charged particles.

View Article and Find Full Text PDF

This article presents the design of a novel ultra-wideband, thin metamaterial linear cross-polarization converter (CPC) operating at microwave frequencies. The CPC consists of two concentric deformed rings on a dielectric substrate backed by a metallic surface. It demonstrates co-polarization and cross-polarization reflection coefficients below - 11 and above - 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!