Influence of arm swing on cost of transport during walking.

Biol Open

Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 BT, The Netherlands

Published: June 2019

Normal arm swing plays a role in decreasing the cost of transport during walking. However, whether excessive arm swing can reduce the cost of transport even further is unknown. Therefore, we tested the effects of normal and exaggerated arm swing on the cost of transport in the current study. Healthy participants (=12) walked on a treadmill (1.25 m/s) in seven trials with different arm swing amplitudes (in-phase, passive restricted, active restricted, normal, three gradations of extra arm swing), while metabolic energy cost and the vertical angular momentum (VAM) and ground reaction moment (GRM) were measured. In general, VAM and GRM decreased as arm swing amplitude was increased, except for in the largest arm swing amplitude condition. The decreases in VAM and GRM were accompanied by a decrease in cost of transport from in-phase walking (negative amplitude) up to a slightly increased arm swing (non-significant difference compared to normal arm swing). The most excessive arm swings led to an increase in the cost of transport, most likely due to the cost of swinging the arms. In conclusion, increasing arm swing amplitude leads to a reduction in VAM and GRM, but it does not lead to a reduction in cost of transport for the most excessive arm swing amplitudes. Normal or slightly increased arm swing amplitude appear to be optimal in terms of cost of transport in young and healthy individuals.This article has an associated First Person interview with the first author of the paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602321PMC
http://dx.doi.org/10.1242/bio.039263DOI Listing

Publication Analysis

Top Keywords

arm swing
52
cost transport
32
swing amplitude
16
swing
13
arm
13
excessive arm
12
vam grm
12
cost
10
swing cost
8
transport
8

Similar Publications

Unlabelled: Myosin-IC (myo1c) is a class-I myosin that supports transport and remodeling of the plasma membrane and membrane-bound vesicles. Like other members of the myosin family, its biochemical kinetics are altered in response to changes in mechanical loads that resist the power stroke. However, myo1c is unique in that the primary force-sensitive kinetic transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins.

View Article and Find Full Text PDF

L-type calcium channel antagonists are uncommon causes of myoclonus, and the underlying mechanism remains unclear. Here, we report a case of parkinsonian syndrome with deterioration of preexisting myoclonus after nifedipine use. A 96-year-old woman was administered a single dose of sustained-release nifedipine for chest pain.

View Article and Find Full Text PDF

In robotic arm controllers, the ability to shift signal levels is crucial for interfacing between different voltage domains in a processor. The level shifter (LS) has been used to convert signals operating near threshold voltage to signals operating well above the threshold voltage. Researchers have developed current mirror-based LSs to employ current mirrors, which duplicate the current from one transistor and accurately replicate it in another, ensuring precise current matching.

View Article and Find Full Text PDF

Stumbles, Gait, and Cognition: Risk Factors Associated with Falls in Older Adults with Subjective Memory Complaints.

Int J Environ Res Public Health

December 2024

Neurology Department, Fundación Valle del Lili, Carrera 98 No. 18-49, Cali 760032, Colombia.

Falls are a public health problem, impacting quality of life, independence, and health costs. Subjective memory complaints (SMCs) and mild cognitive impairment (MCI) increase with age and may coexist. The risk of falls coinciding with SMCs is less understood.

View Article and Find Full Text PDF

Background: Increasing one's walking speed is an important goal in post-stroke gait rehabilitation. Insufficient arm swing in people post-stroke might limit their ability to propel the body forward and increase walking speed.

Purpose: To investigate the speed-dependent changes (and their contributing factors) in the arm swing of persons post-stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!