Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tumor microenvironment (TME) is an essential intrinsic portion of hepatocellular carcinoma (HCC) for the regulation of its origination, development, invasion, and metastasis. As emerging components of the tumor-host interaction, exosomes are increasingly recognized as professional carriers of information in TME and as pivotal molecular entities involved in tumorigenic microenvironment setup. However, much remains unknown about the role of the exosome communication system within TME in the development and progression of HCC. In this review, we focus on the roles and probable mechanisms of TME in HCC and show the exosome-based immune regulation in TME to promote HCC. Multiple processes are involved in HCC, including tumor survival, growth, angiogenesis, invasion, and metastasis. We also discuss the specific roles of exosomes in HCC processes by molding hospitable TME for HCC, such as providing energy, transmitting protumor signals, and evading inhibitory signals. In addition, exosomes induce angiogenesis by changing the biological characteristics of endothelial cells and directly regulating proangiogenic and propermeability factors. Furthermore, exosomes may lead to HCC metastatic invasion by epithelial-mesenchymal transformation, extracellular matrix degradation, and vascular leakage. Finally, we summarize the therapeutic usage of exosomes in the HCC microenvironment and attempt to provide a theoretical reference for modern antitumor agents designed to target these mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542024 | PMC |
http://dx.doi.org/10.1186/s13045-019-0739-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!