Three Pseudomonas aeruginosa strains which constitutively produced chromosomal (Id, or Sabath and Abraham) beta-lactamase in large amounts were resistant to latamoxef (moxalactam) MICs, 128-256 mg/l). Their beta-lactamase-basal mutants, which produced 1200-18,000-fold less enzyme, were latamoxef-sensitive (MICs, 4-16 mg/l), suggesting that the enzyme caused the resistance of the parent organisms. Latamoxef was a feeble substrate of the enzyme (kcat less than 0.5/min) but reacted to form a stable complex that lacked catalytic activity against benzylpenicillin. The complex was isolated by gel filtration and was shown to be stable to isoelectric focusing, suggesting a covalent link between the enzyme and latamoxef. During incubation the complex underwent a slow breakdown, regenerating active enzyme. This breakdown obeyed first-order kinetics, and the half-life of the inactivated form was 19 +/- 1 min at 37 degrees C. Binding of antibiotic molecules in this complex may contribute to the latamoxef-resistance observed in the beta-lactamase-derepressed strains. This 'covalent trapping' should be distinguished from the 'non-covalent trapping' proposed elsewhere as a general mechanism of beta-lactamase-mediated resistance to reversibly-bound weak-substrate beta-lactams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/20.1.7 | DOI Listing |
Chem Res Toxicol
January 2025
SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia.
Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040-, Madrid, Spain.
Herein, we report the synthesis of the naphthalendiimides (NDIs) 1-3 endowed with peripheral 3,4,5-trialkoxybenzamide units and a variable number of 1,2,3-triazole rings. Both the benzamide units and the triazole rings are able to form six- or seven-membered intramolecularly H-bonded pseudocycles that behave as metastable monomeric units. Whilst freshly prepared solutions of 1-3 afford H-type aggregates, the presence or lack of the 1,2,3-triazole rings strongly conditions the kinetics and stability of the resulting aggregated species.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
Covalent hydrogel networks suffer from a stiffness-toughness conflict, where increased crosslinking density enhances the modulus of the material but also leads to embrittlement and diminished extensibility. Recently, strategies have been developed to form highly entangled hydrogels, colloquially referred to as tanglemers, by optimizing polymerization conditions to maximize the density and length of polymer chains and minimize the crosslinker concentration. It is challenging to assess entanglements in crosslinked networks beyond approximating their theoretical contribution to mechanical properties; thus, in this work, we synthesize and characterize polyacrylamide tanglemers using a photolabile crosslinker, which allows for direct assessment of covalent trapping of entanglements under tension.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2024
Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
Global potential energy surface (PES) exploration provides a unique route to predict the thermodynamic and kinetic properties of unknown materials, but the task is highly challenging for systems with tight covalent bonds. Here, we develop the local-softening stochastic surface walking (LS-SSW) method for scanning corrugated PESs. LS-SSW transforms the vibrational mode space of a system by adding pairwise penalty potentials with a self-adaption mechanism, which helps to delocalize and soften the strong local modes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!