A Tree-Structured Algorithm for Reducing Computation in Networks with Separable Basis Functions.

Neural Comput

MIT E25-534, Cambridge, MA 02139 USA.

Published: January 1991

I describe a new algorithm for approximating continuous functions in high-dimensional input spaces. The algorithm builds a tree-structured network of variable size, which is determined both by the distribution of the input data and by the function to be approximated. Unlike other tree-structured algorithms, learning occurs through completely local mechanisms and the weights and structure are modified incrementally as data arrives. Efficient computation in the tree structure takes advantage of the potential for low-order dependencies between the output and the individual dimensions of the input. This algorithm is related to the ideas behind k-d trees (Bentley 1975), CART (Breiman 1984), and MARS (Friedman 1988). I present an example that predicts future values of the Mackey-Glass differential delay equation.

Download full-text PDF

Source
http://dx.doi.org/10.1162/neco.1991.3.1.67DOI Listing

Publication Analysis

Top Keywords

tree-structured algorithm
4
algorithm reducing
4
reducing computation
4
computation networks
4
networks separable
4
separable basis
4
basis functions
4
functions describe
4
describe algorithm
4
algorithm approximating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!