Many brands of filtering facepiece respirators are used against air pollution, including bioaerosols; however, studies have explored exposure to bioaerosols from the inside surfaces of respirators. We evaluated the filtration efficiencies and microbial recovery rates of commercial filtering facepiece respirators against bioaerosols. Eight filtering facepiece respirators and one surgical mask were selected, all with high market shares in the Republic of Korea and certified by national or international standards. The tested filtering facepiece respirators were installed on the head of a mannequin under various airflow velocity and relative humidity (RH) conditions. The filtration efficiency against Staphylococcus epidermidis and Escherichia coli bioaerosols, the pressure drop of the filter, and the relative recovery rates for the bacteria were evaluated. The filtration efficiency of each filtering facepiece respirator ranged from 82% to 99%, depending on the filtration grade. The pressure drop was significantly affected by variations in the surrounding RH. The mean relative recovery rates of all filtering facepiece respirators were 14 ± 4.8% and 9 ± 4.7% for S. epidermidis and E. coli, respectively. These results indicate that airborne microorganisms can survive and accumulate on the surfaces of filtering facepiece respirators, which may lead to harmful health outcomes. Our findings will be useful as background information for the development of commercial filtering facepiece respirators while considering their biological properties and reliable guidance to users.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.05.153 | DOI Listing |
J Int Soc Respir Prot
August 2024
Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta GA USA.
Filtering facepiece respirators (FFRs) are manufactured in discrete sizes, with some models being limited in relation to accommodating the fit of some sex and race combinations. This study presents the development of a custom-fit respiratory protective device (RPD) which conforms to a user's facial features and flexes and moves with facial movements during use. Our design also integrates a pressure-sensing network, which continuously monitors fit and will alert the user when the fit is compromised.
View Article and Find Full Text PDFJ Occup Environ Hyg
December 2024
National Personal Protective Technology Laboratory, National Institute for Occupational Safety and Health, Pittsburgh, Pennsylvania.
Developing and overseeing Respiratory Protection Programs (RPPs) is crucial for ensuring effective respirator use among employees. To date, a gap exists in research that focuses on elastomeric half mask respirators (EHMRs) as the primary respirator in health delivery settings which would necessitate additional considerations in RPPs beyond the more common N95 filtering facepiece respirators. This paper presents lessons learned during a one-year impact evaluation with healthcare and first responder settings that received EHMRs from the Strategic National Stockpile in 2021 and 2022.
View Article and Find Full Text PDFSustain Sci
September 2024
Birmingham Business School, University of Birmingham, Birmingham, UK.
Unlabelled: There is an ongoing trend toward more frequent and multiple crises. While there is a clear need for behaviors to become more sustainable to address the climate crisis, how to achieve this against the backdrop of other crises is unknown. Using a sample of 18,805 participants from the UK, we performed a survey experiment to investigate if communication messages provide a useful tool in nudging intentions toward improved sustainability in the context of the COVID-19 pandemic.
View Article and Find Full Text PDFJAMA Netw Open
October 2024
Department of Emergency Medicine, University of California, San Francisco.
Cureus
September 2024
Anesthesiology, State University of New York Upstate Medical University, Syracuse, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!