Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wastewater reclamation in the textile industry has attracted considerable attention. In this study, catalytic ozonation by regenerated granular activated carbon (rGAC) and its combination with biological activated carbon (BAC) was investigated for the reclamation of a real bio-treated dyeing and finishing wastewater (BDFW). Catalytic ozonation by rGAC (O/rGAC) was 1.6-2.0 times more efficient than ozonation alone for pollutants degradation. Although iron oxide loaded rGAC (rGAC-Fe) improved the performance of catalytic ozonation by 14%-25%, but was labile (<2 days) compared to stable rGAC (>20 days). Catalytic ozonation improved the generation of OH, contributing 1.1-1.7 times faster of chromophores decomposition and 0.24-0.55 times more increase of biodegradability than ozonation. However, catalytic ozonation increased the acute toxicity of BDFW by two times. The combination of O/rGAC and BAC can synergistically reduce COD, chromophores, and color in BDFW during 45-day's continuous operation, the improvements than O/rGAC being 21.0%, 18.8%, and 13.6%, respectively. Moreover, although O/rGAC of BDFW increased the toxicity from 98.3 to 146.5 μg-HgCl/L, post BAC significantly reduced the toxicity to 13.1 μg-HgCl/L. Engineering practice of water reclamation by O/rGAC-BAC was approved to be feasible based on both the water quality of treated water and the operation cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.05.175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!