Nucleoside diphosphate kinases (Nmes or NDPKs) have been implicated in a multitude of cellular processes, including an important role in metastasis suppression, and several enzymatic activities have been assigned to the Nme family. Nevertheless, for many of these processes, it has not been possible to establish a strong connection between Nme enzymatic activity and the relevant biological function. We hypothesized that, in addition to its known enzymatic functions, members of the Nme family might also regulate signaling cascades by acting on key signal transducers. Accordingly, here we show that Nme1 directly interacts with the calcium/calmodulin-dependent kinase II (CaMKII). Using purified proteins, we monitored the phosphorylation of a number of CaMKII substrates and determined that at nanomolar levels Nme1 enhances the phosphorylation of T-type substrates; this modulation shifts to inhibition at low micromolar concentrations. Specifically, the autophosphorylation of CaMKII at Thr286 is completely inhibited by 2 μM Nme1, a feature that distinguishes Nme1 from other known endogenous CaMKII inhibitors. Importantly, CaMKII inhibition does not require phosphotransfer activity by Nme1 because the kinase-dead Nme1 H118F mutant is as effective as the wild-type form of the enzyme. Our results provide a novel molecular mechanism whereby Nme1 could modulate diverse cellular processes in a manner that is independent of its known enzymatic activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768392PMC
http://dx.doi.org/10.1021/acs.biochem.9b00121DOI Listing

Publication Analysis

Top Keywords

nme1
8
cellular processes
8
enzymatic activities
8
nme family
8
camkii
5
metastasis suppressor
4
suppressor protein
4
protein nme1
4
nme1 concentration-dependent
4
concentration-dependent modulator
4

Similar Publications

Unlabelled: Oncogenes hyperactive lactate production, but the mechanisms by which lactate facilitates tumor growth are unclear. Here, we demonstrate that lactate is essential for nucleotide biosynthesis in pediatric diffuse midline gliomas (DMGs). The oncogenic histone H3K27M mutation upregulates phosphoglycerate kinase 1 (PGK1) and drives lactate production from [U- C]-glucose in DMGs.

View Article and Find Full Text PDF

Radiation therapy represents the primary treatment option for triple-negative breast cancer. However, radio resistance is associated with a poor prognosis and an increased risk of recurrence. Radioresistant MDA-MB-231 cells, a radioresistant triple-negative breast cancer cell line, were co-treated with ortho-topolin riboside and melatonin.

View Article and Find Full Text PDF

Genetic Influence of the Brain on Muscle Structure: A Mendelian Randomization Study of Sarcopenia.

J Cachexia Sarcopenia Muscle

February 2025

Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Article Synopsis
  • - The study investigates the relationship between brain structure and function and sarcopenia-related traits, aiming to clarify how brain factors may influence muscle loss and strength in older adults.
  • - Data from the UK Biobank and GTEx Consortium involved over 8,400 participants, using advanced statistical methods to analyze genetic and imaging data for their impact on muscle metrics like lean mass and grip strength.
  • - Findings revealed numerous brain imaging phenotypes that causally impact lean mass and strength, highlighting the complex interplay between neurological health and muscle deterioration.
View Article and Find Full Text PDF

The dimeric NF-κB family of transcription factors activates transcription by binding sequence-specifically to DNA response elements known as κB sites, located within the promoters and enhancers of their target genes. While most NF-κB remain inactive in the cytoplasm of unstimulated cells, a small amount of RelA, one of its members, persists in the nucleus, ensuring low-level expression of genes essential for homeostasis. Several cofactors have been identified that aid in DNA binding of RelA.

View Article and Find Full Text PDF

Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells.

Curr Med Chem

October 2024

Department of Microbiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.

Background: Skin melanoma is a potentially lethal cancer and ranks as the 17th most common cancer worldwide. Overcoming resistance to advanced-stage melanoma is a significant challenge in its treatment. Parthenolide (PAR) is recognized as a potent anticancer small molecule, yet its potential in treating melanoma is poorly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!