Rapid detection of explosive vapors by thermal desorption atmospheric pressure photoionization differential mobility analysis tandem mass spectrometry.

Rapid Commun Mass Spectrom

Sociedad Europea de Analisis Diferencial de Movilidad SL, Boecillo, Spain.

Published: September 2019

Rationale: The increased frequency in the number of international terror threats has led to a corresponding increase in demand for fast, sensitive and reliable screening methods suitable for the detection of airborne explosive vapors. We demonstrate herein a workflow suitable for the determination of nitrogen-based explosives at the picogram level in just minutes.

Methods: A method is described that combines Thermal Desorption (TD) sample introduction with Differential Mobility Analysis (DMA) Tandem Mass Spectrometry (MS/MS), enabling a sensitive and accurate workflow suitable for the rapid detection of trace nitroaromatic, nitroester and nitramine explosive vapors. The methods are bridged using a novel low-flow, field-free Atmospheric Pressure Photoionization (APPI) source, intended specifically for the analysis of gas-phase analytes and airborne particles.

Results: Limits of detection within or below the picogram range were determined for the analysis of a range of explosives standards including 2,6-DNT, TNT, TATB, Tetryl, RDX, EGDN, PETN, HMX, and NG. Practical application of the TD-APPI-DMA-MS/MS workflow was demonstrated for the detection of real trace explosive vapors produced from the volatilization of solid explosive samples stored within a sealed cardboard box. A single complete analysis was performed in less than 2 min.

Conclusions: The highly sensitive and accurate detection of a variety of common nitrogen-based explosive vapors has been demonstrated, at levels suitable for practical, high-throughput security screening applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.8492DOI Listing

Publication Analysis

Top Keywords

explosive vapors
20
rapid detection
8
thermal desorption
8
atmospheric pressure
8
pressure photoionization
8
differential mobility
8
mobility analysis
8
tandem mass
8
mass spectrometry
8
workflow suitable
8

Similar Publications

Background: The detection of explosives in crime scene investigations is critical for forensic science. This study explores the application of laser desorption (LD) ion mobility spectrometry (IMS) as a novel method for this purpose utilising a new IMS prototype developed by MaSaTECH.

Methods: The LD sampling technique employs a laser diode module to vaporise explosive traces on surfaces, allowing immediate analysis by IMS without sample preparation.

View Article and Find Full Text PDF

Nanoparticle-Mediated Explosive Anti-PD-L1 Factory Built in Tumor for Advanced Immunotherapy.

Adv Mater

January 2025

Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.

Immunotherapy, particularly immune checkpoint blockade (ICB) therapies, has revolutionized oncology. However, it encounters challenges such as inadequate drug accumulation and limited efficacy against "cold" tumors characterized by lack of T cell infiltration and immunosuppressive microenvironments. Here, a controlled antibody production and releasing nanoparticle (CAPRN) is introduced, designed to augment ICB efficacy by facilitating tumor-targeted antibody production and inducing photodynamic cell death.

View Article and Find Full Text PDF

Nanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.

View Article and Find Full Text PDF

Synthesis of size and functional-group tunable dansyl-appended fluorescent macrocycles , , , , , and using click reaction is reported. Macrocycles were extensively characterized by using various spectroscopic and theoretical techniques. Fluorescent macrocycles showed positive-solvatofluorism, high quantum yields, and strong interactions with nitroaromatic-explosives.

View Article and Find Full Text PDF
Article Synopsis
  • Dogs are crucial in forensic science due to their exceptional ability to detect scents, particularly for drugs and explosives.
  • The study involved two groups of dogs – sport detection dogs and law enforcement explosive detection dogs – to assess how their sniffing dynamics change with training on specific odorants.
  • Results showed that dogs increased their sniffing frequency as they gained experience with target odors, with law enforcement dogs taking in larger volumes of air compared to sport detection dogs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!