The synthetic potential of KI as the iodide source in aryne three-component coupling has been demonstrated using aldehydes as the third component. This mild and transition-metal-free coupling reaction allowed the straightforward synthesis of 2-iodobenzyl alcohols in moderate to good yields with good functional group compatibility. Moreover, KBr and KCl could be used as the nucleophilic trigger in this aryne multicomponent coupling (MCC) and N-methylisatin and CO could be used as the electrophilic third components.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.9b01621DOI Listing

Publication Analysis

Top Keywords

nucleophilic trigger
8
trigger aryne
8
aryne three-component
8
three-component coupling
8
synthesis 2-iodobenzyl
8
2-iodobenzyl alcohols
8
iodide nucleophilic
4
coupling
4
coupling synthesis
4
alcohols synthetic
4

Similar Publications

Treatment of multisubstituted NH-enesulfinamides with tosyl isocyanate (TsNCO) at room temperature results in the formation of α-tosylcarbamoyloxy -sulfenyl ketimines with high enantioselectivity. This process is believed to proceed via a vinylogous aza-Pummerer-type reaction pathway in which the sulfinyl oxygen atom in the enesulfinamides undergoes nucleophilic attack on tosyl isocyanate, triggering the subsequent transformations that enable the transfer of chirality from sulfur to carbon.

View Article and Find Full Text PDF

Boronic acids have been widely applied in various biological fields, particularly achieving significant practical progress in boronic acid-based glucose sensing. However, boronic acids exhibit nonspecific binding to other nucleophiles, and the inherent lability of boronic esters in biological systems limits their further applications. Herein, we developed a stimuli-responsive controllable caging strategy to achieve photoresponsive spatiotemporally and nitroreductase-responsive cancer cell-selective glucose sensing.

View Article and Find Full Text PDF
Article Synopsis
  • The commercialization of perovskite solar cells (PSCs) is hindered by their fragility and sensitivity to moisture.
  • A new asynchronous cross-linking strategy using divinyl sulfone (DVS) improves perovskite crystallization and creates a durable network through post-treatment with glycerinum.
  • This method boosts the efficiency of PSCs to over 25%, enhances their water resistance, reduces stress, and improves durability, marking a significant advancement in their performance and longevity.
View Article and Find Full Text PDF

Base-catalyzed thiol-epoxy reactions: Energetic and kinetic evaluations.

J Mol Graph Model

March 2025

Chemical Engineering Department, Ondokuz Mayıs University, 55139, Samsun, Turkey. Electronic address:

The mechanism of the base-catalyzed thiol-epoxide stage of the thiol-ene/thiol-epoxide curing process was investigated using quantum chemical tools. This study searched for conventional tertiary amines with low to medium basicity as initiators to control reaction rates and tailor industrial applications. Challenges arise from the stronger basicity of initiators, leading to an uncontrollable and short curing application period.

View Article and Find Full Text PDF

We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!