High Capacity Oil Denitrogenation over Azine- and Tetrazine-Decorated Metal-Organic Frameworks: Critical Roles of Hydrogen Bonding.

ACS Appl Mater Interfaces

Department of Chemistry, Faculty of Sciences , Tarbiat Modares University, Tehran 14117-13116 , Islamic Republic of Iran.

Published: June 2019

In this work, we demonstrate that rational decoration of pore walls of the metal-organic frameworks (MOFs) with azine and dihydro-tetrazine functions is a very practical strategy for high capacity removal of both neutral and basic nitrogen-containing compounds (NCCs) from model oil. Its performance is even much better than the MOFs with high surface area, open metal sites, and different functional groups such as amine, hydroxyl, carboxy, and sulfonate. For this aim, a number of isostructure functional MOFs (FMOFs) have been synthesized. Among them, TMU-5 (with formula [Zn(OBA)(BPDH)] ·1.5DMF, where HOBA = 4,4'-oxybis(benzoic acid) and BPDH = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) and TMU-34 (with formula [Zn(OBA)(HDPT)] ·DMF HDPT = 3,6-di(pyridin-4-yl)-1,4-dihydro-1,2,4,5-tetrazine) show high affinity toward neutral and basic NCCs, respectively. Dihydro-tetrazine-decorated TMU-34 shows good affinity toward basic NCCs [pyridine (PYD) and quinoline (QUI)] because of hydrogen bonding of dihydro-tetrazine (-NH)···(N) basic NCCs. TMU-34 can adsorb about 619 and 632 mg g PYD and QUI, respectively. On the other hand, azine-methyl-functionalized TMU-5 shows very high affinity to neutral NCCs [pyrrole (PRR) and indole (IND)] owing to strong hydrogen bonding of azine-methyl (Me-C═N-N═C-Me)···(NH) neutral NCCs. TMU-5 can adsorb 518 and 578 mg g PRR and IND, respectively. These numbers are among the best reported data in this area and even reveal higher significance of the host-guest interaction when we consider moderate surface of these FMOFs. These results have been achieved by our "application-directed cavity functionalization" approach through decoration of MOF structures by suitable organic functional groups for specific purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b05282DOI Listing

Publication Analysis

Top Keywords

hydrogen bonding
12
basic nccs
12
high capacity
8
metal-organic frameworks
8
neutral basic
8
functional groups
8
high affinity
8
affinity neutral
8
neutral nccs
8
nccs
6

Similar Publications

Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.

View Article and Find Full Text PDF

Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures.

View Article and Find Full Text PDF

The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view.

View Article and Find Full Text PDF

Efficient Photocatalytic Water Purification Through Novel Janus-Nanomicelles with Long-Lived Charge Separation Properties.

Small

January 2025

College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China.

Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz-PDI-PEG rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far.

View Article and Find Full Text PDF

Elaborating H-bonding effect and excited state intramolecular proton transfer of 2-(2-hydroxyphenyl)benzothiazole based D-π-A fluorescent dye.

Phys Chem Chem Phys

January 2025

Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

2-(2-Hydroxyphenyl)benzothiazole (HBT) derivatives with donor-π-acceptor (D-π-A) structure have received extensive attention as a class of excited state intramolecular proton transfer (ESIPT) compounds in the fields of biochemistry and photochemistry. The effects of electron-donors (triphenylamine and anthracenyl), the position of substituents and solvent polarity on the fluorescence properties and ESIPT mechanisms of HBT derivatives were investigated through time-dependent density functional theory (TDDFT) calculations. Potential energy curves (PECs) and frontier molecular orbitals (FMOs) reveal that the introduction of the triphenylamine group on the benzene ring enhances intramolecular HB, thereby benefiting the ESIPT process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!