Water quality has declined globally due to increased contamination of aquatic ecosystems. The use of fish genotoxicity biomarkers may improve and complement parameters for environmental risk assessment. The aim of this study was to assess the genotoxicity of samples collected from streams of the Jordão River, a tributary of the Paranaíba River, Brazil with different levels of metal contamination, utilizing a native fish species to determine the sensitivity and viability of implementing a useful, reliable technique for routine biomonitoring programs. Chemical analysis of water and sediments collected from different sites indicated that a gradient of contamination existed as evidenced by different concentrations of metals detected. After chronic exposure to contaminated samples, micronucleus (MN) frequencies in fish erythrocytes were measured and correlation with environmental parameters determined. Sites where the water concentrations of the metals aluminum (Al), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu) were high indicating a greater genotoxic potential of these elements. At the samples collected from the urban zone, a gradual increase was found for chromium (Cr), cadmium (Cd) and nickel (Ni) indicative of adverse impacts of discharge of urban effluents. Data demonstrated that , used in the test, exhibited a reliable sensitivity for detection of genotoxic consequences attributed to exposure to water samples collected near the discharge of industrial and domestic waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287394.2019.1624235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!