Fractionation of extracts from the culture broth of the marine-derived fungus, sp. 7A22, resulted in the isolation of the harzialactone A (), a known compound previously isolated from fungi of marine environments. The chemical structure of was determined by spectroscopic analyses. Upon evaluation of on antileishmanial assays against , exhibited significant activity against promastigotes forms with IC of 5.25 µg mL and moderate activity against intracellular amastigotes with IC of 18.18 µg mL. This is the first report on the antileishmanial activity of , and the effects of presented in this work suggest that this class of compounds are suitable for future biological and studies for the search of natural products with activity against spp. Furthermore, the present results corroborate marine-derived fungi as a promising source of natural products with antiparasitic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2019.1619725DOI Listing

Publication Analysis

Top Keywords

evaluation antileishmanial
8
antileishmanial activity
8
marine-derived fungus
8
natural products
8
activity
6
activity harzialactone
4
harzialactone isolated
4
isolated marine-derived
4
fungus fractionation
4
fractionation extracts
4

Similar Publications

Synthesis and Structure-Activity Relationship of Thiourea Derivatives Against .

Pharmaceuticals (Basel)

November 2024

Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil.

Leishmaniasis, caused by protozoa and transmitted by vectors, presents varied clinical manifestations based on parasite species and host immunity. The lack of effective vaccines or treatments has prompted research into new therapies, including thiourea derivatives, which have demonstrated antiprotozoal activities. We synthesized two series of ,'-disubstituted thiourea derivatives through the reaction of isothiocyanates with amines.

View Article and Find Full Text PDF

Synthesis and in vitro leishmanicidal activity of novel N-arylspermidine derivatives.

Bioorg Chem

December 2024

Universidad de Buenos Aires, CONICET, Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina. Electronic address:

This work describes the synthesis and biological evaluation of hitherto unknown N-arylspermidine derivatives 3. Compounds 3 were efficiently prepared from cyclic amidines through a novel synthetic approach comprising alkylation with ω-halonitriles followed by reduction. The cyclic N-arylamidine directs the alkylation to the unsubstituted nitrogen and also provides the N-benzyl group present in the triamine after simultaneous reduction of the resulting quaternary salt 2 and the cyano group.

View Article and Find Full Text PDF

This study aims to identify the most sensitive colorimetric test for assessing intracellular drug susceptibility of Leishmania tropica to conventional antileishmanial drugs. To this end, the efficacy of four colorimetric methods-MTT, XTT, MTS, and WST-8-was compared using reference L. tropica promastigotes.

View Article and Find Full Text PDF

Antiparasitic Activity of Coumarin-Chalcone (3-cinnamoyl-2H-chromen-2-ones) Hybrids.

Chem Biodivers

December 2024

Universidad Nacional de Colombia, Antioquia, carrera 65 59a-110, 3840, Medellín, COLOMBIA.

Coumarin-chalcone hybrids are promising compounds that could be used as lead structures in the fight against parasitic diseases. In this work, sixteen hybrids of coumarin-chalcone (3-cinnamoyl-2H-chromen-2-ones) were synthesized, and their in vitro biological activity was evaluated against intracellular amastigotes of Leishmania braziliensis and Trypanosoma cruzi; as well as their cytotoxicity in the U-937 cell line. Compounds (E)-3-(3-(3-ethoxy-4-hydroxyphenyl)acryloyl)-7-methoxy-2H-chromen-2-one (H25) and (E)-7-(diethylamino)-3-(4-(methoxyphenyl)acryloyl)-2H-chromen-2-one (H12) showed the highest antileishmanial activity with EC50 values of 18.

View Article and Find Full Text PDF

A novel inhibitory strategy of using and killer toxins.

Future Microbiol

December 2024

Department of Biology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.

Article Synopsis
  • The study investigates the potential of killer yeasts and their toxins as a biological method for treating leishmaniasis, a widespread parasitic disease.
  • Killer yeasts were isolated, and their toxins (K2 and K.L) showed significantly lower IC50 values against leishmaniasis-causing organisms compared to standard treatments like Glucantime and Amphotericin B.
  • The research concludes that K2 and K.L toxins possess strong antileishmanial properties, presenting a promising alternative for biological treatment of leishmaniasis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!