Neuroprotection of Resveratrol Against Focal Cerebral Ischemia/Reperfusion Injury in Mice Through a Mechanism Targeting Gut-Brain Axis.

Cell Mol Neurobiol

Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she East Road, Zhengzhou, 450000, Henan, China.

Published: August 2019

Increasing evidences have shown that resveratrol could protect the brain from ischemic injury; the mechanisms underlying its neuroprotective effects are multifactorial and not fully understood. It remains unclear whether resveratrol could exert neuroprotection through modulating gut-brain axis, which plays important roles in stroke pathology. In this study, C57BL/6 mice underwent middle cerebral artery occlusion (60 min) followed by reperfusion for 3 days. Resveratrol, when applied immediately after MCAO onset for 3 days, promoted Th1/Th2 balance towards Th2 polarization and skewed Treg/Th17 balance towards Treg in the small intestinal lamina propria (SI-LP), and decreased small intestinal pro-inflammatory cytokines expression through modulating intestinal flora at 3 days post-ischemia (dpi). Resveratrol attenuated cerebral ischemia-induced increase in the epithelial and vascular permeability of small intestine as evidenced by reduced evans blue extravasasion and decreased protein leakage by feces/plasma albumin ratio at 3 dpi. The blood levels of pro-inflammatory cytokines at 3 dpi were also attenuated by resveratrol due to inhibiting intestinal pro-inflammatory immunity and decreasing epithelial and vascular permeability. Resveratrol robustly protected against post-stroke inflammation-induced blood-brain barrier disruption not only in the cortex but also in the striatum at 3 dpi. Furthermore, resveratrol mediated smaller cerebral infarcts and less neurological deficits via decreasing the levels of pro-inflammatory cytokines in the peri-infarct area at 3 dpi. Our results for the first time demonstrated that resveratrol may inhibit systemic post-stroke inflammation and neuroinflammation via modulating intestinal flora-mediated Th17/Tregs and Th1/Th2 polarity shift in SI-LP, which may be one of the mechanisms underlying the neuroprotective effects of resveratrol.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-019-00687-3DOI Listing

Publication Analysis

Top Keywords

pro-inflammatory cytokines
12
resveratrol
9
gut-brain axis
8
mechanisms underlying
8
underlying neuroprotective
8
neuroprotective effects
8
small intestinal
8
intestinal pro-inflammatory
8
modulating intestinal
8
dpi resveratrol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!