We introduced a novel micro/nanofluidic chip platform (MNCP), which is based on an isothermal nucleic acid amplification method. This study aimed to evaluate the MNCP method for influenza A and B viruses detecting and subtyping using throat swab samples from patients with influenza-like illness (ILI). A total of 266 throat swab samples from 266 non-repeated patients with ILI were tested for influenza A and B viruses using three methods, MNCP, a rapid influenza diagnostic test (RIDT), and real-time reverse transcription polymerase chain reaction (rRT-PCR). The results of MNCP were compared to those obtained by rRT-PCR and RIDT and the performance of MNCP was further evaluated. Compared with rRT-PCR results, the rates of sensitivity, specificity, overall concordance, and the kappa value of MNCP were 98.89%, 96.97%, 97.65%, and 0.95 for influenza A virus; 94.95%, 99.38%, 97.68%, and 0.95 for influenza B virus, respectively. Subtypes of influenza A viruses, e.g., A(H1N1)pdm09, A(H3N2), and A(not subtyped), and influenza B viruses could be distinguished in one MNCP assay within 1 h. Compared with rRT-PCR and MNCP, RIDT showed poor clinical sensitivity for influenza virus detection. This study showed MNCP is rapid, sensitive and versatile detecting system with potential for clinical application in pathogen diagnosis for patients with ILI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538719 | PMC |
http://dx.doi.org/10.1186/s13568-019-0791-8 | DOI Listing |
Nanomedicine (Lond)
March 2025
Department of Chemistry and The Institute for Laser, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY, USA.
Background: Nanomedicine offers a number of innovative strategies to address major public health burdens, including complex respiratory illnesses. In this work, we introduce a multi-drug nanoparticle fabricated using femtosecond laser ablation for the treatment of influenza, SARS-CoV-2, and their co-infections.
Methods: The SARS-CoV-2 antiviral, remdesivir; the influenza antiviral, baloxavir marboxil; and the anti-inflammatory, dexamethasone, were co-crystalized and then ablated in aqueous media using a femtosecond pulsed laser and subsequently surface modified with the cationic polymer, chitosan, or poly-d-lysine.
Biosaf Health
December 2024
National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
Pigs are vital genetic mixing vessels for human and avian influenza viruses because their tracheal epitheliums possess both sialic acid α-2,6-Gal and α-2,3-Gal receptors. Cross-species transmission of influenza A viruses from swine to humans occurs occasionally. The first case of human infection with the Eurasian avian-like H1N1 swine influenza virus (EAH1N1 SIVs) genotype G4 was detected in Jiangsu Province, China, in February 2023, and backtracking epidemiological investigations did not reveal a clear source of the infection.
View Article and Find Full Text PDFBiosaf Health
June 2024
Key Laboratory of Biosafety, National Health Commission of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
The matrix protein 2 (M2) is a preferred target for developing a universal vaccine against the influenza A virus (IAV). This study aimed to develop a method for assessing antibody-dependent cell-mediated cytotoxicity (ADCC) associated with M2-based immunization in mice. We first established a stable cell line derived from mouse lymphoma cells (YAC-1) expressing M2 of H3N2.
View Article and Find Full Text PDFJFMS Open Rep
March 2025
Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
Objectives: The objective of this study was to retrospectively assess the pathogens associated with feline ocular and respiratory diseases in routine diagnostic samples submitted to Georgia Veterinary Diagnostic Laboratories. Furthermore, pathogens detected by the respiratory PCR panel in the upper vs lower respiratory tract were compared (specimen separation at pharynx).
Methods: Test records from feline ocular and respiratory PCR panels were collected from 2012 to 2022.
Analyst
March 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, P.R. China.
The rapid and sensitive detection of H5N1, a highly pathogenic avian influenza virus, is crucial for controlling its spread and minimizing its impact on public health. In this study, we developed a novel biosensor based on strand displacement amplification (SDA) coupled with CRISPR/Cas12a for highly sensitive detection of H5N1 DNA. The biosensor utilizes a combination of a three-way junction structure, composed of three hairpins (H1, H2, H3), to initiate amplification through SDA, resulting in the production of numerous activators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!