Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions.

AMB Express

Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.

Published: May 2019

Iron deficiency is one of the main causes of chlorosis in plants, which leads to losses in field crops quality and yield. The use of synthetic chelates to prevent or correct iron-deficiency is not satisfactory mainly due to their poor biodegradability. The present work aimed to search suitable microorganisms to produce alternative, environment-friendly iron-chelating agents (siderophores). For this purpose, the performance of five bacteria (Azotobacter vinelandii, Bacillus megaterium, Bacillus subtilis, Pantoea allii and Rhizobium radiobacter) was evaluated, regarding siderophore production kinetics, level of siderophore production (determined by chrome azurol S, CAS method), type of siderophore produced (using Arnow and Csaky's tests) and iron-chelating capacity at pH 9.0. All bacteria were in stationary phase at 24 h, except A. vinelandii (at 72 h) and produced the maximum siderophore amount (80-140 µmol L) between 24 and 48 h, with the exception of A. vinelandii (at 72 h). The analysis of culture filtrates revealed the presence of catechol-type siderophores for B. subtilis and R. radiobacter and hydroxamate-type siderophores for B. megaterium and P. allii. In the case of A. vinelandii, both siderophore-types (catechol and hydroxamates) were detected. The highest iron-chelating capacity, at pH 9.0, was obtained by B. megaterium followed by B. subtilis and A. vinelandii. Therefore, these three bacteria strains are the most promising bacteria for siderophore production and chlorosis correction under alkaline conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538730PMC
http://dx.doi.org/10.1186/s13568-019-0796-3DOI Listing

Publication Analysis

Top Keywords

siderophore production
12
alkaline conditions
8
iron-chelating capacity
8
vinelandii 72 h
8
vinelandii
5
siderophore
5
comparison bacterial
4
bacterial strains
4
strains producing
4
siderophores
4

Similar Publications

Cooperative and Independent Functionality of tmRNA and SmpB in : A Multifunctional Exploration Beyond Ribosome Rescue.

Int J Mol Sci

January 2025

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.

The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.

View Article and Find Full Text PDF

Aims: The aim of this study was to evaluate the impact of the introduction of a phosphoribosylpyrophosphate synthetase (PRS) mutation into a plant growth-promoting strain of Methylorubrum on the enhancement of phyllosphere colonization, with the ultimate goal of improving plant growth and quality.

Methods And Results: A strain of Methylorubrum populi (named HS04) was isolated from the groundnut leave and found to process the plant-promoting traits, including the ability to produce indole acetic acid, siderophore, 1-aminocyclopropane-1- carboxylate deaminase, and to fix nitrogen. The application via foliar spray significantly increased the fresh weight of cucumber seedlings cultivated in a standard growth chamber, with 43.

View Article and Find Full Text PDF

Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.

View Article and Find Full Text PDF

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection.

View Article and Find Full Text PDF

Objective: To describe immune responses following administration of experimental Salmonella Dublin siderophore receptor protein (SRP) vaccines in Holstein heifer calves with adequate passive antibody transfer.

Methods: Calves were randomly assigned to receive placebo, vaccination with S Dublin SRP in adjuvant A, or vaccination with S Dublin SRP in adjuvant B at 7 ± 3 days of age and 3 weeks later. Before each vaccination, 4 and 8 days after the second vaccination (postvaccination), and 61 to 91 days postvaccination, S Dublin antibody titers were measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!