In the brain, a reduction in extracellular osmolality causes water-influx and swelling, which subsequently triggers Cl- and osmolytes-efflux via volume-regulated anion channel (VRAC). Although LRRC8 family has been recently proposed as the pore-forming VRAC which is activated by low cytoplasmic ionic strength but not by swelling, the molecular identity of the pore-forming swelling-dependent VRAC (VRAC) remains unclear. Here we identify and characterize Tweety-homologs (TTYH1, TTYH2, TTYH3) as the major VRAC in astrocytes. Gene-silencing of all eliminated hypo-osmotic-solution-induced Cl conductance (I) in cultured and hippocampal astrocytes. When heterologously expressed in HEK293T or CHO-K1 cells, each TTYH isoform showed a significant I with similar aquaporin-4 dependency, pharmacological properties and glutamate permeability as I observed in native astrocytes. Mutagenesis-based structure-activity analysis revealed that positively charged arginine residue at 165 in TTYH1 and 164 in TTYH2 is critical for the formation of the channel-pore. Our results demonstrate that TTYH family confers the VRAC in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526117PMC
http://dx.doi.org/10.5607/en.2019.28.2.183DOI Listing

Publication Analysis

Top Keywords

volume-regulated anion
8
anion channel
8
channel vrac
8
vrac brain
8
vrac
7
tweety-homolog family
4
family encodes
4
encodes pore-forming
4
pore-forming subunits
4
subunits swelling-dependent
4

Similar Publications

Ischemia-reperfusion injury is a serious clinical pathology involving multiple organs such as the heart and brain. The injury results from oxidative stress, inflammatory response and cell death triggered by restoring tissue blood flow after ischemia, leading to severe cell and tissue damage. In recent years, the volume-regulated anion channel (VRAC) has gained attention as an important membrane protein complex.

View Article and Find Full Text PDF

Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e.

View Article and Find Full Text PDF

Cisplatin-based chemotherapy is used across many common tumor types, but resistance reduces the likelihood of long-term survival. We previously found the puromycin-sensitive aminopeptidase, NPEPPS, as a druggable driver of cisplatin resistance in vitro and in vivo and in patient-derived organoids. Here, we present a general mechanism where NPEPPS interacts with the volume-regulated anion channels (VRACs) to control cisplatin import into cells and thus regulate cisplatin response across a range of cancer types.

View Article and Find Full Text PDF

Volume-regulated anion channels (VRACs) are multimeric proteins composed of different paralogs of the LRRC8 family. They are activated in response to hypotonic swelling, but little is known about their specific functions. We studied two human individuals with the same congenital syndrome affecting blood vessels, brain, eyes, and bones.

View Article and Find Full Text PDF

Prolonged exposure of mammalian cells to hypotonic environments stimulates the development of sometimes large and numerous vacuoles of unknown origin. Here, we investigate the nature and formation of these vacuoles, which we term LateVacs. Vacuolation starts after osmotic cell swelling has subsided and continues for many hours thereafter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!