Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of β-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of β-catenin via glycogen synthase kinase 3β (GSK3β)-dependent degradation, GSK3β expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3β did not prevent ammonia-induced degradation of β-catenin. Overexpression of GSK3β-resistant variants, genetic depletion of IκB kinase β (IKKβ) (activated during hyperammonemia), protein interactions, and kinase assays showed that IKKβ phosphorylated β-catenin directly. Overexpressing β-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3β-independent, IKKβ-dependent impairment of the β-catenin-cMYC axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664607 | PMC |
http://dx.doi.org/10.1128/MCB.00451-18 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!