Although ChIP-seq has become a routine experimental approach for quantitatively characterizing the genome-wide binding of transcription factors (TFs), computational analysis procedures remain far from standardized, making it difficult to compare ChIP-seq results across experiments. In addition, although genome-wide binding patterns must ultimately be determined by local constellations of DNA-binding sites, current analysis is typically limited to identifying enriched motifs in ChIP-seq peaks. Here we present Crunch, a completely automated computational method that performs all ChIP-seq analysis from quality control through read mapping and peak detecting and that integrates comprehensive modeling of the ChIP signal in terms of known and novel binding motifs, quantifying the contribution of each motif and annotating which combinations of motifs explain each binding peak. By applying Crunch to 128 data sets from the ENCODE Project, we show that Crunch outperforms current peak finders and find that TFs naturally separate into "solitary TFs," for which a single motif explains the ChIP-peaks, and "cobinding TFs," for which multiple motifs co-occur within peaks. Moreover, for most data sets, the motifs that Crunch identified de novo outperform known motifs, and both the set of cobinding motifs and the top motif of solitary TFs are consistent across experiments and cell lines. Crunch is implemented as a web server, enabling standardized analysis of any collection of ChIP-seq data sets by simply uploading raw sequencing data. Results are provided both in a graphical web interface and as downloadable files.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633267 | PMC |
http://dx.doi.org/10.1101/gr.239319.118 | DOI Listing |
Front Neural Circuits
January 2025
Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy.
The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.
View Article and Find Full Text PDFItal J Pediatr
January 2025
Department of Surgical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
Background: Under-five mortality and malnutrition are more common in many low- and middle-income countries, highlighting the grave consequences of improper nutrition for children. Infants that continue to be exclusively breastfed after six months are considered to be engaging in prolonged exclusive breastfeeding. Children with prolonged exclusive breastfeeding are more susceptible to anemia, atopic dermatitis, and food allergies.
View Article and Find Full Text PDFBMC Cancer
January 2025
Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
Background: This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Anesthesiology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan.
Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76344, Germany.
Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!