In this paper, the effect of coupled thermal dilation and stress on interstitial fluid transport in tumour tissues is evaluated. The tumour is modelled as a spherical deformable poroelastic medium embedded with interstitial fluid, while the transvascular fluid flow is modelled as a uniform distribution of fluid sink and source points. A hyperbolic-decay radial function is used to model the heat source generation along with a rapid decay of tumour blood flow. Governing equations for displacement, fluid flow and temperature are first scaled and then solved with a finite-element scheme. Results are compared with analytical solutions from the literature, while results are presented for different scaling parameters to analyse the various physical phenomena. Results show that temperature affects pressure and velocity fields through the deformable medium. Finally, simulations are performed by assuming that the heat source is periodic, in order to assess the extent to which this condition affects the velocity field. It is reported that in some cases, especially for periodic heating, the combination of thermoelastic and poroelastic deformation led to no monotonic pressure distribution, which can be interesting for applications such as macromolecule drug delivery, in which the advective contribution is very important owing to the low diffusivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544888 | PMC |
http://dx.doi.org/10.1098/rsif.2019.0030 | DOI Listing |
Aging Dis
March 2025
Department of Radiology, Peking University Third Hospital, Beijing, China.
Neurochemical imbalance is a contributing factor to neurological symptoms in multiple sclerosis (MS). The matured myelin sheath is crucial for substance transportation within the extracellular space (ECS) and for maintaining local homeostasis. Therefore, we hypothesize that disturbed ECS transportation following demyelinating lesions might lead to neurochemical imbalance in MS.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Ministry of Education Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend D18:L8-BO is utilized to capture a wide range of photons while addressing the challenge of minimizing optical losses from low-energy photons.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Mathematics, AIR University, Sector E-9, Islamabad, Pakistan.
Fluids possessing advanced thermal capabilities are a requirement of today's world scientific technology and are an inherent vital part of diversified large-scale processes. As a result, the induction of nanometric-sized particles has been considered an emerging approach to achieve advanced liquids. Various combinations have been used to enhance the efficiency of nanofluids in thermal engineering systems.
View Article and Find Full Text PDFACS Nano
March 2025
CNRS-LOMA, UMR 5798, 351 cours de la Libération, F-33400 Talence, France.
Catalytic microswimmers convert the chemical energy from fuel into motion. They sustain chemical gradients and fluid flows that propel them by phoresis. This leads to unconventional behavior and collective dynamics, such as self-organization into complex structures.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, La Jolla, CA 92037.
The transthyretin (TTR) tetramer, assembled as a dimer of dimers, transports thyroxine and retinol binding protein in blood plasma and cerebrospinal fluid. Aggregation of wild type (WT) or pathogenic variant TTR leads to transthyretin amyloidosis, which is associated with neurodegenerative and cardiac disease. The trigger for TTR aggregation under physiological conditions is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!