Fumaric acid (FA), a metabolic intermediate, has been identified as an important carbohydrate derived platform chemical. Currently, it is commercially sourced from petrochemicals by chemical conversion. The shift to biochemical synthesis has become essential for sustainable development and for the transition to a biobased economy from a petroleum-based economy. The main limitation is that the concentrations of FA achieved during bioproduction are lower than that from a chemical process. Moreover, the high cost associated with bioproduction necessitates a higher yield to improve the feasibility of the process. To this effect, genetic modification of microorganism can be considered as an important tool to improve FA yield. This review discusses various genetic modifications strategies that have been studied in order to improve FA production. These strategies include the development of recombinant strains of , and as well as their mutants. The transformed strains were able to accumulate fumaric acid at a higher concentration than the corresponding wild strains but the fumaric acid titers obtained were lower than that reported with native fumaric acid producing strains. Moreover, one plausible adoption of gene editing tools, such as Agrobacterium-mediated transformation (AMT), CRISPR CAS-9 and RNA interference (RNAi) mediated knockout and silencing, have been proposed in order to improve fumaric acid yield. Additionally, the introduction of the glyoxylate pathway in to improve fumaric acid yield as well as the biosynthesis of fumarate esters have been proposed to improve the economic feasibility of the bioprocess. The adoption of some of these genetic engineering strategies may be essential to enable the development of a feasible bioproduction process.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07388551.2019.1620677DOI Listing

Publication Analysis

Top Keywords

fumaric acid
28
order improve
8
improve fumaric
8
acid yield
8
acid
7
fumaric
6
improve
6
bioproduction
4
bioproduction fumaric
4
acid insight
4

Similar Publications

Metabolomics and microbiome analysis elucidate the detoxification mechanisms of Hemarthria compressa, a low cadmium accumulating plant, in response to cadmium stress.

J Hazard Mater

January 2025

College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China. Electronic address:

Cadmium (Cd) is recognized as one of the most toxic heavy metal in the environment that causes pronounced phytotoxicity. This study investigated the physiological and biochemical responses and detoxification mechanisms of Hemarthria compressa under various concentrations of Cd stress (0, 30, 60, 90, and 270 mg·kg). Our research findings indicate that the growth and photosynthetic capacity of H.

View Article and Find Full Text PDF

Metabolome and RNA-seq reveal discrepant metabolism and secretory metabolism profile in skeletal muscle between obese and lean pigs at different ages.

Sci China Life Sci

January 2025

Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.

Metabolites and metabolism-related gene expression profiles in skeletal muscle change dramatically under obesity, aging and metabolic disease. Since obese and lean pigs are ideal models for metabolic research. Here, we compared metabolome and transcriptome of Longissimus dorsi (LD) muscle between Taoyuan black (TB, obese) and Duroc (lean) pigs at different ages.

View Article and Find Full Text PDF

Therapeutic effects of fumaric acid on proteomic expression and gut microbiota composition in Pacific white shrimp (Penaeus vannamei) infected with Ecytonucleospora hepatopenaei (EHP).

Fish Shellfish Immunol

January 2025

Vet Products Research & Innovation Center Co., Ltd, 141 Moo9, Thailand Science Park, Innovation Clusters (INC2) Tower D 11th floor, Room No. INCD1108-INCD1111 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.

Recently, microsporidiosis caused by a microsporidian [Ecytonucleospora (Enterocytozoon) hepatopenaei, EHP] has been found to seriously impact the global shrimp industry. The aim of this study was to evaluate the therapeutic effects of fumaric acid (FA) in EHP-infected Pacific white shrimp (Penaeus vannamei). In the first 2 groups, non-EHP-infected shrimp were fed FA-supplemented (10 g/kg diet) or normal feed (CM+ and CM-, respectively).

View Article and Find Full Text PDF

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

Integration of transcriptomics and metabolomics reveals the mechanism of Glycyrrhizae Radix Et Rhizoma extract inhibiting CCL5 in the treatment of acute pharyngitis.

Phytomedicine

January 2025

Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. Electronic address:

Background: Acute pharyngitis (AP) is a common condition marked by inflammation of the oropharynx, which can lead to severe throat swelling, breathing difficulties, and even suffocation, significantly impacting quality of life. Despite the beneficial anti-inflammatory activity of Glycyrrhizae Radix Et Rhizoma (GRER) and Isoliquiritigenin (ISL), their pharmacological mechanisms against AP remain unclear.

Purpose: This study explores the mechanisms by which GRER treats AP, utilizing both transcriptomics and metabolomics approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!