Silica gels are widely employed in water shutoff services, making them an essential tool in oil well management. Silica nanoparticles may serve as a strengthening additive for polymer hydrogels. In this study, we look at this statement from a different angle: What additives could be used to increase the strength of silica gels? Colloidal silica gels were prepared with various additives, and gel strength was measured by a Veiler-Rebinder apparatus. We found that cellulose nanofibrils considerably increase the gel strength (from 20-25 to 35-40 kPa), which is comparable with the industrial anionic polymer Praestol 2540. Cellulose nanofibrils can be produced from cheap industrial-grade cellulose with low-cost industrial chemicals and could be partially replaced by the even less expensive halloysite nanoclay. Cellulose nanofibrils produced from renewable sources and naturally occurring halloysite nanoclay could be used as complementary reinforcing agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571770 | PMC |
http://dx.doi.org/10.3390/polym11050919 | DOI Listing |
Biol Pharm Bull
January 2025
Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China. Electronic address:
This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline KCO/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals.
View Article and Find Full Text PDFMolecules
January 2025
Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China.
Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new type of biological macromolecule, nanocellulose has been extensively utilized in paper conservation, attributed to its excellent paper compatibility, high optical transparency, outstanding mechanical strength, and large specific surface area with abundant hydroxyl groups.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan.
Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. Electronic address:
In recent years, conductive gel materials have attracted extensive attention in the field of flexible electronics because of their excellent elasticity. When constructed as gel fibers, they can adapt to greater deformation, be woven, and be assembled with fabrics to make wearable smart devices without compromising comfort. However, gel fibers reported often exhibit insufficient mechanical properties and poor adaptability to different environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!