Binding to The Target Cell Surface Is The Crucial Step in Pore Formation of Hemolysin BL from .

Toxins (Basel)

Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany.

Published: May 2019

A major virulence factor involved in food poisoning is the three-component enterotoxin hemolysin BL. It consists of the binding component B and the two lytic components L and L. Studying its mode of action has been challenging, as natural culture supernatants additionally contain Nhe, the second three-component enterotoxin, and purification of recombinant (r) Hbl components has been difficult. In this study, we report on pore-forming, cytotoxic, cell binding and hemolytic activity of recently generated rHbl components expressed in . It is known that all three Hbl components are necessary for cytotoxicity and pore formation. Here we show that an excess of rHbl B enhances, while an excess of rHbl L hinders, the velocity of pore formation. Most rapid pore formation was observed with ratios L:L:B = 1:1:10 and 10:1:10. It was further verified that Hbl activity is due to sequential binding of the components B - L - L. Accordingly, all bioassays proved that binding of Hbl B to the cell surface is the crucial step for pore formation and cytotoxic activity. Binding of Hbl B took place within minutes, while apposition of the following L and L occurred immediately. Further on, applying toxin components simultaneously, it seemed that Hbl L enhanced binding of B to the target cell surface. Overall, these data contribute significantly to the elucidation of the mode of action of Hbl, and suggest that its mechanism of pore formation differs substantially from that of Nhe, although both enterotoxin complexes are sequentially highly related.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563250PMC
http://dx.doi.org/10.3390/toxins11050281DOI Listing

Publication Analysis

Top Keywords

pore formation
24
cell surface
12
binding target
8
target cell
8
surface crucial
8
crucial step
8
step pore
8
three-component enterotoxin
8
mode action
8
hbl components
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Virginia Commonwealth University, Richmond, VA, USA.

Background: Pyroptosis is a type of inflammasome-dependent cell death, in which gasdermin D (GSDMD) plays key roles as the executor. Neuroinflammation and pyroptosis have been indicated critical roles in neurodegenerative disorders including Alzheimer's disease (AD). Therefore, novel GSDMD inhibitors represent valuable probes to understand and validate GSDMD as a viable drug target for AD.

View Article and Find Full Text PDF

Two-pore-domain potassium channels (K2P) family is widely expressed in many human cell types and organs, which has important regulatory effect on physiological processes. K2P is sensitive to a variety of chemical and physical stimuli, and they have also been critically implicated in transmission of neural signal, ion homeostasis, cell development and death, and synaptic plasticity. Aberrant expression and dysfunction of K2P channels are involved in a range of diseases, including autoimmune, central nervous system, cardiovascular disease and others.

View Article and Find Full Text PDF

Sulfate Promotes Compact CaCO Formation and Protects Portland Cement from Supercritical CO Attack.

Environ Sci Technol

January 2025

Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Supercritical (sc) CO in geologic carbon sequestration (GCS) can chemically and mechanically deteriorate wellbore cement, raising concerns for long-term operations. In contrast to the conventional view of "sulfate attack" on cement, we found that adding 0.15 M sulfate to the acidic brine can significantly reduce the impact of scCO attack on Portland cement, resulting in stronger cement than that found in a sulfate-free system.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.

Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.

Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.

View Article and Find Full Text PDF

Characterization, adsorption kinetic and in vitro release behavior of curcumin loaded with porous mannitol and porous lactose: Template agent method vs. Pore-forming agent method.

Food Res Int

January 2025

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China. Electronic address:

Polyvinylpyrrolidone K30 was used as the templating agent, and ammonium bicarbonate was used as the pore-forming agent to make porous mannitol and porous lactose by the template and pore-forming agent method, respectively. Compared with the template method, the porous particles prepared by the pore-forming agent method have larger pore diameter (320.276 nm and 250.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!