An optical fiber interferometric refractometer for alcohol gas concentration and low refractive index (RI) solution (with 1.33-1.38 RI range) measurement is theoretically and experimentally demonstrated. The refractometer is based on a single-mode thin-core single-mode (STS) interferometric structure. By embedding a suitably sized air cavity at the splicing point, high-order cladding modes are successfully excited, which makes the sensor more suitable for low RI solution measurement. The effect of the air cavity's diameter on the sensitivity of alcohol gas concentration was analyzed experimentally, which proved that RI sensitivity will increase with an enlarged diameter of the air cavity. On this basis, the air cavity is filled with graphene in order to improve the sensitivity of the sensor; and the measured sensitivity of the alcohol gas concentration is -1206.1 pm/%. Finally, the characteristics of the single-cavity structure, graphene-filled structure and double-cavity structure sensors are demonstrated, and the linear RI sensitivities are -54.593 nm/RIU (refractive index unit), -85.561 nm/RIU and 359.77 nm/RIU, respectively. Moreover, these sensor structures have the advantages of being compact and easily prepared.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567200 | PMC |
http://dx.doi.org/10.3390/s19102319 | DOI Listing |
Acute Med Surg
January 2025
Division of Acute and Critical Care Medicine, Department of Anaesthesiology and Critical Care Medicine Hokkaido University Graduate School of Medicine Sapporo Japan.
Aim: Hypothermia-associated pancreatitis lacks comprehensive understanding owing to limited studies exploring its mechanism, epidemiology, risk factors, and outcomes. We aimed to investigate the frequency, characteristics, and predictive factors associated with the development of acute pancreatitis in patients with accidental hypothermia.
Methods: This study comprised a post hoc analysis of data from a multicenter prospective observational study (ICE-CRASH study) conducted in 36 tertiary emergency hospitals in Japan.
Soft Matter
January 2025
National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, People's Republic of China.
Ethylene-vinyl acetate (EVA) film is the predominant encapsulation material in crystalline silicon photovoltaic modules, the efficient and eco-friendly processing of which is essential for the recycling of the modules. Among the various existing techniques, the chemical approach uses solvents to induce swelling and dissolution on the EVA film to facilitate the separation of distinct layers. This method demonstrates the potential for achieving low-energy consumption and minimal-damage retrieval of the diverse materials within the components.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Trichloroethylene (TCE) is widely used in various industrial applications, leading to significant environmental and public health concerns due to its toxicity and persistence. Current nonthermal liquid-phase TCE treatment methods, including electrochemical processes, typically produce liquid byproducts that require additional separation steps, limiting their efficiency. To overcome these challenges, this study introduces an innovative electrochemical approach for the direct conversion of TCE gas into less harmful gaseous products, utilizing a Cu/Ni alloy 3D foam electrode integrated with a poly(vinyl alcohol) (PVA)-sodium polyphosphate (SPP) gel membrane system.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan.
Ethanol (EtOH) gas detection has garnered considerable attention owing to its wide range of applications in industries such as food, pharmaceuticals, medical diagnostics, and fuel management. The development of highly sensitive EtOH-gas sensors has become a focus of research. This study proposes an optical interferometric surface stress sensor for detecting EtOH gas.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China.
In this paper, we investigated the efficient metal-free phosphorus-nitrogen (PN) catalyst and used the PN catalyst to degrade waste PU with two-component binary mixed alcohols as the alcohol solvent. We examined the effects of reaction temperature, time, and other factors on the hydroxyl value and viscosity of the degradation products; focused on the changing rules of the hydroxyl value, viscosity, and molecular weight of polyols recovered from degradation products with different dosages of the metal-free PN catalyst; and determined the optimal experimental conditions of reaction temperature 180 °C, reaction time 3 h, and PN dosage 0.08%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!