A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cryogenic Gas for Rapid Cooling of Commercially Processed Shell Eggs Before Packaging. | LitMetric

Research was initiated to evaluate the effects on egg quality and microbial counts of rapidly cooling eggs by using cryogenic gases. Four trials were conducted utilizing a 2 × 2 factorial design with cryogenic cooling and Pseudomonas inoculation as the main variables. The 1440 eggs used in each trial were evaluated for cracked shells, Haugh units, and albumen pH. Cryogenically cooled treatment groups were successfully cooled from 37°C to 7°C in significantly less time than in a traditionally cooled pallet. The Haugh unit values obtained from traditionally cooled eggs were significantly (P > .001) lower than those from cryogenically cooled eggs. There was no significant difference in the albumen pH of the two groups. Internal and external bacterial counts revealed significantly fewer bacteria in the interior of cryogenically cooled eggs than in the interior of traditionally cooled eggs. However, after a 30-day storage period at 7°C, no difference was found in external and internal bacterial contamination rates. The results of this trial suggest that rapid cooling with cryogenic gases could be used in conjunction with current commercial egg processing to cool eggs prior to packaging. The successful commercial application of this procedure would reduce egg temperatures as well as the likelihood of Salmonella enteritidis growth in or on eggs. Thus, consumers would be provided with safer commercially processed shell eggs. In addition, the Haugh unit data indicate that rapid cooling with cryogenic gases enhances the quality of commercially processed shell eggs.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X-58.4.389DOI Listing

Publication Analysis

Top Keywords

cooled eggs
16
rapid cooling
12
commercially processed
12
processed shell
12
shell eggs
12
cryogenic gases
12
cryogenically cooled
12
traditionally cooled
12
eggs
11
haugh unit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!