The identification of a common different gene expression signature in patients with colorectal cancer.

Math Biosci Eng

Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui 323000, China.

Published: April 2019

Colorectal cancer (CRC) is one of the most common malignancies, giving rise to serious financial burden globally. This study was designed to explore the potential mechanisms implicated with CRC and identify some key biomarkers. CRC-associated gene expression dataset (GSE32323) was downloaded from GEO database. The differentially expressed genes (DEGs) were selected out based on the GEO2R tool. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to search the enriched pathways of these DEGs. Additionally, a protein-protein interaction (PPI) network was also constructed to visualize interactions between these DEGs. Quantitative Real-time PCR (qPCR) was further performed to valid the top5 up-regulated and top5 down-regulated genes in patients with CRC. Finally, the survival analysis of the top5 up-regulated and top5 down-regulated genes was conducted using GEPIA, aiming to clarify their potential effects on CRC. In this study, a total of 451 DEGs were captured (306 down-regulated genes and 145 up-regulated genes). Among these DEGs, the top5 up-regulated genes were DPEP1, KRT23, CLDN1, LGR5 and FOXQ1 while the top5 down-regulated genes were CLCA4, ZG16, SLC4A4, ADH1B and GCG. GO analysis revealed that these DEGs were mainly enriched in cell adhesion, cell proliferation, RNA polymerase II promoter and chemokine activity. KEGG analysis disclosed that the enriched pathway included mineral absorption, chemokine signaling pathway, transcriptional misregulation in cancer, pathways in cancer and PPAR signaling pathway. Survival analysis showed that the expression level of ZG16 may correlate with the prognosis of CRC patients. Furthermore, according to the connectivity degree of these DEGs, we selected out the top15 hub genes, namely MYC, CXCR1, TOP2A, CXCL12, SST, TIMP1, SPP1, PPBP, CDK1, THBS1, CXCL1, PYY, LPAR1, BMP2 and MMP3, which were expected to be promising therapeutic target in CRC. Collectively, our analysis unveiled potential biomarkers and candidate targets in CRC, which could be helpful to the diagnosis and treatment of CRC.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2019145DOI Listing

Publication Analysis

Top Keywords

down-regulated genes
16
top5 up-regulated
12
top5 down-regulated
12
genes
9
gene expression
8
colorectal cancer
8
crc
8
genes degs
8
degs selected
8
up-regulated top5
8

Similar Publications

Gene expression profiling for the diagnosis of male breast cancer.

BMC Cancer

December 2024

Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

Background: Male breast cancer (MBC) is a rare malignancy, but its global incidence has shown a notable increase in recent decades. Factors such as limited health literacy, inadequate health education, and reluctance to seek medical attention contribute to the late-stage diagnosis of most MBC patients. Consequently, there is an urgent need for a highly specific and sensitive diagnostic approach to MBC.

View Article and Find Full Text PDF

Cross-species regulatory network analysis identifies FOXO1 as a driver of ovarian follicular recruitment.

Sci Rep

December 2024

Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, and Microbiology Graduate Program, University of Delaware, Newark, DE, USA.

The transcriptional regulation of gene expression in the latter stages of follicular development in laying hen ovarian follicles is not well understood. Although differentially expressed genes (DEGs) have been identified in pre-recruitment and pre-ovulatory stages, the master regulators driving these DEGs remain unknown. This study addresses this knowledge gap by utilizing Master Regulator Analysis (MRA) combined with the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) for the first time in laying hen research to identify master regulators that are controlling DEGs in pre-recruitment and pre-ovulatory phases.

View Article and Find Full Text PDF

Background/aim: Glioblastoma is the most malignant brain tumor, and despite advances in treatment, survival rates are still dismal. Therefore, a comprehensive understanding of the underlying molecular mechanisms of glioblastoma is needed. This study suggests potential therapeutic targets in glioblastoma that may provide new therapeutic insights.

View Article and Find Full Text PDF

A Transcriptome Approach Evaluating the Effects of Atractylenolide I on the Secretion of Estradiol and Progesterone in Feline Ovarian Granulosa Cells.

Vet Sci

December 2024

Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.

(AMK) as an oriental medicine has been used in the treatment of threatened abortion. (AT-I) is one of the major bioactive components of AMK. This study aimed to investigate the effect of AT-I on the secretion of estradiol (E) and progesterone (P) in feline ovarian granulosa cells (FOGCs), which is necessary for pregnancy.

View Article and Find Full Text PDF

Precocious sexual inducer (psi)-producing oxygenases (Ppos) participate in the production of C8 moldy volatile compounds (MVOCs), and these compounds could act as signal molecules modulating G protein signaling cascades, which participates in the growth and development, secondary metabolisms and pathogenicity of filamentous fungi. In this study, PePpoA and PePpoC proteins were identified in . The deletion of decreased C8 MVOC production in , while they were not detected in the strain ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!