Anomaly detection in ECG based on trend symbolic aggregate approximation.

Math Biosci Eng

Department of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China.

Published: March 2019

ECG anomaly detection is a necessary approach to detect disease Electrocardiography( ECG) signals before the detail diagnosis process in medical field to gauge the health of the human heart. Nowadays, there are many anomaly detection methods for ECG detection including supervised learning and unsupervised learning. For supervised learning, it requires the knowledge of expert and different types of Arrhythmia data for training. However, since the anomalies are less and unknown in many cases which are di cult to distinguish and be labeled, unsupervised methods are more suitable to detect the ECG anomalies. Furthermore, the existing unsupervised learning studies do not take ECG shape into account where different diseases have different shapes. In this paper, a novel simple trend aggregate approximation method is proposed, the relative binary trend representation are used to record the shape feature in original time series and to detect the anomaly heart signals by similarity comparison. We use the ECG dataset in UCR Time Series Classification Archive to obtain ECG time series data and the experiment results are assessed by means of sensitivity, specificity, false alarm rate measures which is robust and promising with high accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2019105DOI Listing

Publication Analysis

Top Keywords

anomaly detection
12
time series
12
ecg
8
aggregate approximation
8
supervised learning
8
unsupervised learning
8
anomaly
4
detection ecg
4
ecg based
4
based trend
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!