Jasmonate production through chlorophyll a degradation by Stay-Green in Arabidopsis thaliana.

J Plant Physiol

Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan. Electronic address:

Published: July 2019

Leaf color change through chlorophyll degradation is a characteristic symptom of senescence. Magnesium removal from chlorophyll a is the initial step in chlorophyll a degradation, in a reaction catalyzed by Stay-Green (SGR). Arabidopsis thaliana has three SGR homologs, SGR1, SGR2, and SGR-like. When SGR1 is overexpressed, both chlorophyll a and b are degraded and leaves turn yellow. This process is visually identical to senescence, suggesting that SGR1 overexpression affects various physiological processes in plants. To examine this possibility, gene expression associated with chlorophyll metabolism and senescence was analyzed following dexamethasone-inducible SGR1 introduction into Arabidopsis. When SGR1 was overexpressed following 18 h of dexamethasone treatment, genes involved in chlorophyll degradation were upregulated, as were senescence-associated genes. These observations suggested that chlorophyll a degradation promotes senescence. As jasmonate is the plant hormone responsible for senescence and was expected to be involved in the regulation of gene expression after dexamethasone treatment, the level of jasmonoyl-isoleucine, the active form of jasmonate, was measured. The jasmonoyl-isoleucine level increased slightly after 10 h of SGR1 overexpression, and this increase became significant after 18 h. These observations suggest that jasmonate is produced through chlorophyll a degradation and affects the promotion of senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2019.05.004DOI Listing

Publication Analysis

Top Keywords

chlorophyll degradation
24
chlorophyll
9
arabidopsis thaliana
8
sgr1 overexpressed
8
sgr1 overexpression
8
gene expression
8
dexamethasone treatment
8
degradation
6
senescence
6
sgr1
6

Similar Publications

L-Cysteine Treatment Delays Leaf Senescence in Chinese Flowering Cabbage by Regulating ROS Metabolism and Stimulating Endogenous HS Production.

Foods

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

Leaf senescence is a major concern for postharvest leafy vegetables, as leaves are highly prone to yellowing and nutrient loss, resulting in reduced commercial value and limited shelf-life. This study aimed to investigate the effect of L-cysteine (L-cys) on postharvest Chinese flowering cabbage stored at 20 °C. The results showed that 0.

View Article and Find Full Text PDF

Circadian- and Light-Driven Rhythmicity of Interconnected Gene Networks in Olive Tree.

Int J Mol Sci

January 2025

Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy.

A circadian clock (CC) has evolved in plants that synchronizes their growth and development with daily and seasonal cycles. A properly functioning circadian clock contributes to increasing plant growth, reproduction, and competitiveness. In plants, continuous light treatment has been a successful approach for obtaining novel knowledge about the circadian clock.

View Article and Find Full Text PDF

Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.

View Article and Find Full Text PDF

The rising concentration of microplastics (MPs) in aquatic environments poses increasing ecological risks, yet their impacts on biological communities remain largely unrevealed. This study investigated how aminopolystyrene microplastics (PS-NH) affect physiology and gene expression using the freshwater alga sp. as the test species.

View Article and Find Full Text PDF

Cytological, Physiological, and Transcriptome Analysis of Leaf-Yellowing Mutant in .

Int J Mol Sci

December 2024

Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China.

Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!