Increased levels of adipose tissue-resident Th17 cells in obesity associated with miR-326.

Immunol Lett

Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomus University of San Luis Potosí, UASLP, Mexico; Center for Research in Health Sciences and Biomedicine, Autonomus University of San Luis Potosí, UASLP, Mexico. Electronic address:

Published: July 2019

miRNAs are important immune regulators in the control of the CD4 + T cells phenotype. miR-326 regulates the differentiation towards Th17 cells and the inhibition of miR-155 is associated with low levels of Treg cells. However, miRNAs expression and transcription factors associated with these lymphocyte subsets in obesity-induced adipose tissue inflammation is still unknown. The aim of this work was to identify Th17 cells in subcutaneous adipose tissue (SAT), proinflammatory cytokine production and their association with the miRNAs and transcription factors involved. We collected SAT samples obtained by lipoaspiration from individuals with normal weight, overweight and obesity. We obtained the stromal vascular fractions and then a Ficoll gradient was performed to obtain adipose tissue mononuclear cells (ATMC). Th17 cells were evaluated by flow cytometry and the expression of miR-326, miR-155, RORC2 and FOXP3 by qRT-PCR. We also analyzed cytokines from the supernatants of the ATMC culture and measured the FOXP3 methylation percentage by bisulfite conversion by PCR. According to the results, the frequency of Th17 cells and RORC2 expression was higher in individuals with obesity and associated with miR-326 expression. The ATMC from this group secreted a proinflammatory cytokine profile by in vitro assay. In contrast, lower levels of mRNA FOXP3 expression was detected in ATMC from individuals with obesity that correlated with methylation percentage of FOXP3 gene but no association with miR-155 was detected. Our results suggested that miR-326 participates in the polarization towards Th17 promoting the inflammatory state in the obesity-induced adipose tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2019.05.010DOI Listing

Publication Analysis

Top Keywords

th17 cells
20
adipose tissue
16
cells
8
obesity associated
8
associated mir-326
8
transcription factors
8
obesity-induced adipose
8
proinflammatory cytokine
8
methylation percentage
8
individuals obesity
8

Similar Publications

Therapeutic Potential of (L.) . Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease.

Pharmaceuticals (Basel)

January 2025

School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.

Inflammatory bowel disease (IBD) is a persistent inflammatory condition affecting the gastrointestinal tract, distinguished by the impairment of the intestinal epithelial barrier, dysregulation of the gut microbiota, and abnormal immune responses. (L.) , traditionally used in Chinese herbal medicine for gastrointestinal issues such as bleeding and dysentery, has garnered attention for its potential therapeutic benefits.

View Article and Find Full Text PDF

: Cytokines related to the Th17 response have been associated with peri-implant diseases; however, the effect of peri-implant therapy on their modulation remains underexplored. To evaluate the effect of peri-implant therapy on the expression of cytokines related to the Th17 response in the peri-implant crevicular fluid (PICF) (GM-CSF, IFN-γ, IL-1β, IL-4, IL-6, IL-10, IL-12 (p70), IL-17A, IL-21, IL-23, and TNF-α) of partially edentulous patients with peri-implant disease (PID). : Thirty-seven systemically healthy individuals presenting with peri-implant mucositis (PIM) (n = 20) or peri-implantitis (PI) (n = 17) were treated and evaluated at baseline (T0) and three months after therapy (T1).

View Article and Find Full Text PDF

In approximately half of the recurrent spontaneous abortion (RSA) cases, the underlying cause is unknown. However, most unexplained miscarriages are thought to be linked to immune dysfunction. This review summarizes the current evidence regarding the immunological evaluations of patients with RSA, with potential implications for clinical research.

View Article and Find Full Text PDF

Class IA PI3K p110δ and p110α subunits participate in TCR and costimulatory receptor signals involved in T cell-mediated immunity, but the role of p110α is not completely understood. Here, we analyzed a mouse model of the Cre-dependent functional inactivation of p110α (kinase dead) in T lymphocytes (p110αKD-T, KD). KD mice showed increased cellularity in thymus and spleen and altered T cell differentiation with increased number of CD4CD8 DP thymocytes, enhanced proportion of CD4 SP lymphocytes linked to altered apoptosis, lower Treg cells, and increased AKT and ERK phosphorylation in activated thymocytes.

View Article and Find Full Text PDF

Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!