Increased Sensorimotor Cortex Activation With Decreased Motor Performance During Functional Upper Extremity Tasks Poststroke.

J Neurol Phys Ther

Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, Canada (S.B.L., J.J.E.); Rehabilitation Sciences, Faculty of Graduate Studies, University of British Columbia, Vancouver, Canada (S.B.L.); and Department of Physical Therapy, University of British Columbia, Vancouver, Canada (J.J.E.).

Published: July 2019

Background And Purpose: Current literature has focused on identifying neuroplastic changes associated with stroke through tasks and in positions that are not representative of functional rehabilitation. Emerging technologies such as functional near-infrared spectroscopy (fNIRS) provide new methods of expanding the area of neuroplasticity within rehabilitation. This study determined the differences in sensorimotor cortex activation during unrestrained reaching and gripping after stroke.

Methods: Eleven individuals with chronic stroke and 11 neurologically healthy individuals completed reaching and gripping tasks under 3 conditions using their (1) stronger, (2) weaker, and (3) both arms together. Performance and sensorimotor cortex activation using fNIRS were collected. Group and arm differences were calculated using mixed analysis of covariance (covariate: age). Pairwise comparisons were used for post hoc analyses. Partial Pearson correlations between performance and activation were assessed for each task, group, and hemisphere.

Results: Larger sensorimotor activations in the ipsilesional hemisphere were found for the stroke compared with healthy group for reaching and gripping conditions despite poorer performance. Significant correlations were observed between gripping performance (with the weaker arm and both arms simultaneously) and sensorimotor activation for the stroke group only.

Discussion And Conclusions: Stroke leads to significantly larger sensorimotor activation during functional reaching and gripping despite poorer performance. This may indicate an increased sense of effort, decreased efficiency, or increased difficulty after stroke. fNIRS can be used for assessing differences in brain activation during movements in functional positions after stroke. This can be a promising tool for investigating possible neuroplastic changes associated with functional rehabilitation interventions in the stroke population.Video Abstract available for more insights from the authors (see Video Abstract, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A269).

Download full-text PDF

Source
http://dx.doi.org/10.1097/NPT.0000000000000277DOI Listing

Publication Analysis

Top Keywords

reaching gripping
16
sensorimotor cortex
12
cortex activation
12
neuroplastic changes
8
changes associated
8
stroke
8
functional rehabilitation
8
larger sensorimotor
8
despite poorer
8
poorer performance
8

Similar Publications

Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.

View Article and Find Full Text PDF

Background: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.

Purpose: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.

Methods: This cross-sectional study recruited 29 healthy young adults.

View Article and Find Full Text PDF

Modern construction is largely dependent on steel and concrete, with natural materials such as earth being significantly underutilised. Despite its sustainability and accessibility, earth is not being used to its full potential in developed countries. This study explores innovative building materials using Alhambra Formation soil (Granada, Spain) reinforced with difficult-to-recycle agricultural waste: polypropylene fibres contaminated with organic matter and leachates.

View Article and Find Full Text PDF

Background: Usually, patients with hand, wrist/forearm disorders report musculoskeletal complaints in the shoulder. Although, role of scapula is fundamental for movement and functional stability across the upper limb kinetic chain; however, there are no systematic reviews and meta-analyses that have analyzed the effect of scapular exercises in these patients.

Purpose: This study aimed to determine the effectiveness of a scapular exercise program on functional outcomes in patients with hand, wrist or elbow disorders.

View Article and Find Full Text PDF

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!